mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
rhoCentralDyMFoam: Dynamic mesh version of rhoCentralFoam
This commit is contained in:
@ -0,0 +1,3 @@
|
||||
rhoCentralDyMFoam.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/rhoCentralDyMFoam
|
||||
@ -0,0 +1,17 @@
|
||||
EXE_INC = \
|
||||
-I../rhoCentralFoam \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
|
||||
-I../rhoCentralFoam/BCs/lnInclude \
|
||||
-I$(LIB_SRC)/sampling/lnInclude \
|
||||
-I$(LIB_SRC)/dynamicMesh/lnInclude \
|
||||
-I$(LIB_SRC)/meshTools/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-lfiniteVolume \
|
||||
-lbasicThermophysicalModels \
|
||||
-lspecie \
|
||||
-lrhoCentralFoam \
|
||||
-ldynamicMesh \
|
||||
-lmeshTools
|
||||
@ -0,0 +1,245 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
rhoCentralFoam
|
||||
|
||||
Description
|
||||
Density-based compressible flow solver based on central-upwind schemes of
|
||||
Kurganov and Tadmor
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "basicPsiThermo.H"
|
||||
#include "zeroGradientFvPatchFields.H"
|
||||
#include "fixedRhoFvPatchScalarField.H"
|
||||
#include "motionSolver.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
#include "setRootCase.H"
|
||||
|
||||
#include "createTime.H"
|
||||
#include "createMesh.H"
|
||||
#include "createFields.H"
|
||||
#include "readThermophysicalProperties.H"
|
||||
#include "readTimeControls.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
#include "readFluxScheme.H"
|
||||
|
||||
dimensionedScalar v_zero("v_zero", dimVolume/dimTime, 0.0);
|
||||
|
||||
Info<< "\nStarting time loop\n" << endl;
|
||||
|
||||
autoPtr<Foam::motionSolver> motionPtr = motionSolver::New(mesh);
|
||||
|
||||
while (runTime.run())
|
||||
{
|
||||
// --- upwind interpolation of primitive fields on faces
|
||||
|
||||
surfaceScalarField rho_pos =
|
||||
fvc::interpolate(rho, pos, "reconstruct(rho)");
|
||||
surfaceScalarField rho_neg =
|
||||
fvc::interpolate(rho, neg, "reconstruct(rho)");
|
||||
|
||||
surfaceVectorField rhoU_pos =
|
||||
fvc::interpolate(rhoU, pos, "reconstruct(U)");
|
||||
surfaceVectorField rhoU_neg =
|
||||
fvc::interpolate(rhoU, neg, "reconstruct(U)");
|
||||
|
||||
volScalarField rPsi = 1.0/psi;
|
||||
surfaceScalarField rPsi_pos =
|
||||
fvc::interpolate(rPsi, pos, "reconstruct(T)");
|
||||
surfaceScalarField rPsi_neg =
|
||||
fvc::interpolate(rPsi, neg, "reconstruct(T)");
|
||||
|
||||
surfaceScalarField e_pos =
|
||||
fvc::interpolate(e, pos, "reconstruct(T)");
|
||||
surfaceScalarField e_neg =
|
||||
fvc::interpolate(e, neg, "reconstruct(T)");
|
||||
|
||||
surfaceVectorField U_pos = rhoU_pos/rho_pos;
|
||||
surfaceVectorField U_neg = rhoU_neg/rho_neg;
|
||||
|
||||
surfaceScalarField p_pos = rho_pos*rPsi_pos;
|
||||
surfaceScalarField p_neg = rho_neg*rPsi_neg;
|
||||
|
||||
surfaceScalarField phiv_pos = U_pos & mesh.Sf();
|
||||
surfaceScalarField phiv_neg = U_neg & mesh.Sf();
|
||||
|
||||
volScalarField c = sqrt(thermo.Cp()/thermo.Cv()*rPsi);
|
||||
surfaceScalarField cSf_pos =
|
||||
fvc::interpolate(c, pos, "reconstruct(T)")*mesh.magSf();
|
||||
surfaceScalarField cSf_neg =
|
||||
fvc::interpolate(c, neg, "reconstruct(T)")*mesh.magSf();
|
||||
|
||||
surfaceScalarField ap =
|
||||
max(max(phiv_pos + cSf_pos, phiv_neg + cSf_neg), v_zero);
|
||||
surfaceScalarField am =
|
||||
min(min(phiv_pos - cSf_pos, phiv_neg - cSf_neg), v_zero);
|
||||
|
||||
surfaceScalarField a_pos = ap/(ap - am);
|
||||
|
||||
surfaceScalarField amaxSf("amaxSf", max(mag(am), mag(ap)));
|
||||
|
||||
surfaceScalarField aSf = am*a_pos;
|
||||
|
||||
if (fluxScheme == "Tadmor")
|
||||
{
|
||||
aSf = -0.5*amaxSf;
|
||||
a_pos = 0.5;
|
||||
}
|
||||
|
||||
surfaceScalarField a_neg = (1.0 - a_pos);
|
||||
|
||||
phiv_pos *= a_pos;
|
||||
phiv_neg *= a_neg;
|
||||
|
||||
surfaceScalarField aphiv_pos = phiv_pos - aSf;
|
||||
surfaceScalarField aphiv_neg = phiv_neg + aSf;
|
||||
|
||||
// Reuse amaxSf for the maximum positive and negative fluxes
|
||||
// estimated by the central scheme
|
||||
amaxSf = max(mag(aphiv_pos), mag(aphiv_neg));
|
||||
|
||||
#include "compressibleCourantNo.H"
|
||||
#include "readTimeControls.H"
|
||||
#include "setDeltaT.H"
|
||||
|
||||
runTime++;
|
||||
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
mesh.movePoints(motionPtr->newPoints());
|
||||
phiv_pos = U_pos & mesh.Sf();
|
||||
phiv_neg = U_neg & mesh.Sf();
|
||||
fvc::makeRelative(phiv_pos, U);
|
||||
fvc::makeRelative(phiv_neg, U);
|
||||
phiv_neg -= mesh.phi();
|
||||
phiv_pos *= a_pos;
|
||||
phiv_neg *= a_neg;
|
||||
aphiv_pos = phiv_pos - aSf;
|
||||
aphiv_neg = phiv_neg + aSf;
|
||||
|
||||
surfaceScalarField phi("phi", aphiv_pos*rho_pos + aphiv_neg*rho_neg);
|
||||
|
||||
surfaceVectorField phiUp =
|
||||
(aphiv_pos*rhoU_pos + aphiv_neg*rhoU_neg)
|
||||
+ (a_pos*p_pos + a_neg*p_neg)*mesh.Sf();
|
||||
|
||||
surfaceScalarField phiEp =
|
||||
aphiv_pos*(rho_pos*(e_pos + 0.5*magSqr(U_pos)) + p_pos)
|
||||
+ aphiv_neg*(rho_neg*(e_neg + 0.5*magSqr(U_neg)) + p_neg)
|
||||
+ aSf*p_pos - aSf*p_neg;
|
||||
|
||||
volTensorField tauMC("tauMC", mu*dev2(fvc::grad(U)().T()));
|
||||
|
||||
// --- Solve density
|
||||
Info<< max(rho) << " " << min(rho) << endl;
|
||||
solve(fvm::ddt(rho) + fvc::div(phi));
|
||||
Info<< max(rho) << " " << min(rho) << endl;
|
||||
|
||||
// --- Solve momentum
|
||||
solve(fvm::ddt(rhoU) + fvc::div(phiUp));
|
||||
|
||||
U.dimensionedInternalField() =
|
||||
rhoU.dimensionedInternalField()
|
||||
/rho.dimensionedInternalField();
|
||||
U.correctBoundaryConditions();
|
||||
rhoU.boundaryField() = rho.boundaryField()*U.boundaryField();
|
||||
|
||||
if (!inviscid)
|
||||
{
|
||||
solve
|
||||
(
|
||||
fvm::ddt(rho, U) - fvc::ddt(rho, U)
|
||||
- fvm::laplacian(mu, U)
|
||||
- fvc::div(tauMC)
|
||||
);
|
||||
rhoU = rho*U;
|
||||
}
|
||||
|
||||
// --- Solve energy
|
||||
surfaceScalarField sigmaDotU =
|
||||
(
|
||||
(
|
||||
fvc::interpolate(mu)*mesh.magSf()*fvc::snGrad(U)
|
||||
+ (mesh.Sf() & fvc::interpolate(tauMC))
|
||||
)
|
||||
& (a_pos*U_pos + a_neg*U_neg)
|
||||
);
|
||||
|
||||
solve
|
||||
(
|
||||
fvm::ddt(rhoE)
|
||||
+ fvc::div(phiEp)
|
||||
- fvc::div(sigmaDotU)
|
||||
);
|
||||
|
||||
e = rhoE/rho - 0.5*magSqr(U);
|
||||
e.correctBoundaryConditions();
|
||||
thermo.correct();
|
||||
rhoE.boundaryField() =
|
||||
rho.boundaryField()*
|
||||
(
|
||||
e.boundaryField() + 0.5*magSqr(U.boundaryField())
|
||||
);
|
||||
|
||||
if (!inviscid)
|
||||
{
|
||||
volScalarField k("k", thermo.Cp()*mu/Pr);
|
||||
solve
|
||||
(
|
||||
fvm::ddt(rho, e) - fvc::ddt(rho, e)
|
||||
- fvm::laplacian(thermo.alpha(), e)
|
||||
+ fvc::laplacian(thermo.alpha(), e)
|
||||
- fvc::laplacian(k, T)
|
||||
);
|
||||
thermo.correct();
|
||||
rhoE = rho*(e + 0.5*magSqr(U));
|
||||
}
|
||||
|
||||
p.dimensionedInternalField() =
|
||||
rho.dimensionedInternalField()
|
||||
/psi.dimensionedInternalField();
|
||||
p.correctBoundaryConditions();
|
||||
rho.boundaryField() = psi.boundaryField()*p.boundaryField();
|
||||
|
||||
runTime.write();
|
||||
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
}
|
||||
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// ************************************************************************* //
|
||||
Reference in New Issue
Block a user