phaseSystemModels function objects are relocated within
functionObjects in order to enable broader usage.
ENH: multiphaseInterHtcModel: new heatTransferCoeff function object model
COMP: createExternalCoupledPatchGeometry: add new dependencies
COMP: alphaContactAngle: avoid duplicate entries between multiphaseEuler and reactingEuler
TUT: damBreak4Phase: rename alphaContactAngle as multiphaseEuler::alphaContactAngle
thermoTools is a relocation of various existing tools:
- src/TurbulenceModels/compressible/turbulentFluidThermoModels/derivedFvPatchFields/
- src/semiPermeableBaffle/derivedFvPatchFields/
- src/thermophysicalModels/thermophysicalPropertiesFvPatchFields/liquidProperties/
ENH: Allwmake: reordering various compilation steps
Co-authored-by: Kutalmis Bercin <kutalmis.bercin@esi-group.com>
This is on
- incompressible/pimpleFoam/laminar/mixerVesselAMI2D/mixerVesselAMI2D-topologyChange
- redistributePar -reconstruct
where the fvMesh::updateMesh does an early trigger of
mesh.phi() calculation
Specific to the VOF-to-lagrangian FO is to generate particles
which potentially do not relate to the mesh. So here they
are preserved instead of trying to locate them on the
reconstructed mesh. Note: this has the same effect
of actually copying the file...
speciesSorption is a zeroGradient BC which absorbs mass given by a first
order time derivative, absoprtion rate and an equilibrium value
calculated based on internal species values next to the wall.
patchCellsSource is a source fvOption which applies to the corresponding
species and apply the source calculated on the speciesSorption BC.
A new abstract virtual class was created to group BC's which
don't introduce a source to the matrix (i.e zeroGradient) but calculate
a mass sink/source which should be introduced into the matrix. This
is done through the fvOption patchCellsSource.
- this allows the "relocation" of sampled surfaces. For example,
to reposition into a different coordinate system for importing
into CAD.
- incorporate output scaling for all surface writer types.
This was previously done on an adhoc basis for different writers,
but with now included in the base-level so that all writers
can automatically use scale + transform.
Example:
formatOptions
{
vtk
{
scale 1000; // m -> mm
transform
{
origin (0.05 0 0);
rotation axisAngle;
axis (0 0 1);
angle -45;
}
}
}
in RASModelVariables were doing this by checking whether the
corresponding pointer was allocated. In some cases, however, even if the
field does not exist, the pointer is not null, leading to the wrong
output. Made the correspding functions virtual and overwritten their
return values in the derived classes. Kept the initial implementation in
base to facilitate the clone function.
in cases with more than one primal or adjoint solvers
TUT: removed all occurances of useSolverNameForFields
from the optimisation tutorials since it is now set
automatically.
in the sensitivity patches, symmetry::evaluate() needs access to the
internalField which does exist, leading to wrong memory access.
Fixed by specifying a calculated type fvPatchField for all patches when
creating a boundaryField<Type>
Using a symmetry(Plane) as a sensitivity patch is quite rare and
borderline wrong, but this provides a fix nonetheless.