- makes it accessible for containers that manage their own storage
and derive directly from UList.
- DynamicList::min_size() method to access the corresponding
SizeMin template parameter.
- ensure consistency in the reserve size for the constructor
DynamicList<..> lst(N);
now has identical sizing as
DynamicList<..> lst();
reserve(N);
- improve functional compatibility with DynList (remove methods)
* eg, remove an element from any position in a DynamicList
* reduce the number of template parameters
* remove/subset regions of DynamicList
- propagate Swap template specializations for lists, hashtables
- move construct/assignment to various containers.
- add find/found methods for FixedList and UList for a more succinct
(and clearer?) usage than the equivalent global findIndex() function.
- simplify List_FOR_ALL loops
for consistency with reactingTwoPhaseEulerFoam and to ensure correct operation
of models requiring formal boundedness of phase-fractions.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2589
"pos" now returns 1 if the argument is greater than 0, otherwise it returns 0.
This is consistent with the common mathematical definition of the "pos" function:
https://en.wikipedia.org/wiki/Sign_(mathematics)
However the previous implementation in which 1 was also returned for a 0
argument is useful in many situations so the "pos0" has been added which returns
1 if the argument is greater or equal to 0. Additionally the "neg0" has been
added which returns 1 if if the argument is less than or equal to 0.
Original commit message:
------------------------
Parallel IO: New collated file format
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor. Processor directories are named 'processorN',
where N is the processor number.
This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor. The files are stored in a single
directory named 'processors'.
The new format produces significantly fewer files - one per field, instead of N
per field. For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.
The file writing can be threaded allowing the simulation to continue running
while the data is being written to file. NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".
The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:
OptimisationSwitches
{
...
//- Parallel IO file handler
// uncollated (default), collated or masterUncollated
fileHandler uncollated;
//- collated: thread buffer size for queued file writes.
// If set to 0 or not sufficient for the file size threading is not used.
// Default: 2e9
maxThreadFileBufferSize 2e9;
//- masterUncollated: non-blocking buffer size.
// If the file exceeds this buffer size scheduled transfer is used.
// Default: 2e9
maxMasterFileBufferSize 2e9;
}
When using the collated file handling, memory is allocated for the data in the
thread. maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated. If the data exceeds this size, the write does not use threading.
When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer. If the
data exceeds this size, the system uses scheduled communication.
The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters. Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.
A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated
An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling
The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
vectorField or vector2DField from scalarField components. To do this
properly and have it work for field-type combinations would require some
new field function macros.
Now the interFoam and compressibleInterFoam families of solvers use the same
alphaEqn formulation and supporting all of the MULES options without
code-duplication.
The semi-implicit MULES support allows running with significantly larger
time-steps but this does reduce the interface sharpness.
- Cannot pass through to underlying list constructor directly.
- As this constructor was broken, there seem to be a number of
workarounds scattered in the code. Could revisit them in the future
as part of code-style:
edgeMesh(const Xfer<pointField>&, const Xfer<edgeList>&);
CompactIOField(const IOobject&, const Xfer<Field<T>>&);
GlobalIOField(const IOobject&, const Xfer<Field<Type>>&);
IOField(const IOobject&, const Xfer<Field<Type>>&);
This supports the abstraction of the set of fields from the field code
generation macros making it easier to change the set of fields supported
by OpenFOAM. This functionality is demonstrated in the updated
fvPatchFields macros and will be applied to the rest of the field code
generation macros in the future.