- previously had a mismash of const/non-const attributes on iterators
that were confused with the attributes of the object being accessed.
- use the iterator keys() and object() methods consistently for all
internal access of the HashTable iterators. This makes the intention
clearer, the code easier to maintain, and protects against any
possible changes in the definition of the operators.
- 'operator*': The standard form expected by STL libraries.
However, for the std::map, this dereferences to a <key,value> pair,
whereas OpenFOAM dereferences simply to <value>.
- 'operator()': OpenFOAM treats this like the 'operator*'
- adjusted the values of end() and cend() to reinterpret from nullObject
instead of returning a static iteratorEnd() object.
This means that C++ templates can now correctly deduce and match
the return types from begin() and end() consistently.
So that range-based now works.
Eg,
HashTable<label> table1 = ...;
for (auto i : table1)
{
Info<< i << endl;
}
Since the 'operator*' returns hash table values, this prints all the
values in the table.
This uses a concept similar to what std::valarray and std::slice do.
A labelRange provides a convenient container for holding start/size
and lends itself to addressing 'sliced' views of lists.
For safety, the operations and constructors restricts the given input range
to a valid addressible region of the underlying list, while the labelRange
itself precludes negative sizes.
The SubList version is useful for patches or other things that have a
SubList as its parameter. Otherwise the UList [] operator will be the
more natural solution. The slices can be done with a labelRange, or
a {start,size} pair.
Examples,
labelList list1 = identity(20);
list1[labelRange(18,10)] = -1;
list1[{-20,25}] = -2;
list1[{1000,5}] = -3;
const labelList list2 = identity(20);
list2[{5,10}] = -3; // ERROR: cannot assign to const!
Provides the additional compression necessary to ensure interface integrity
adjacent to a boundary at a low angle of incidence to the interface. This is
particularly important when simulating planing hulls.
Updated the tetrahedron and triangle classes to use the barycentric
primitives. Removed duplicate code for generating random positions in
tets and tris, and fixed bug in tri random position.
- optimize erasure using different HashTable based on its size.
Eg, hashtable.erase(other);
If 'other' is smaller than the hashtable, it is more efficient to
use the keys from other to remove from the hashtable.
Otherwise simply iterate over the hashtable and remove it if
that key was found in other.
- some functionality similar to what the standary library <iterator>
provides.
* stdFoam::begin() and stdFoam::end() do type deduction,
which means that many cases it is possible to manage these types
of changes.
For example, when managing a number of indices:
Map<labelHashSet> lookup;
1) Longhand:
for
(
Map<labelHashSet>::const_iterator iter = lookup.begin();
iter != lookup.end();
++iter
)
{ .... }
1b) The same, but wrapped via a macro:
forAllConstIter(Map<labelHashSet>, lookup, iter)
{ .... }
2) Using stdFoam begin/end templates directly
for
(
auto iter = stdFoam::begin(lookup);
iter != stdFoam::end(lookup);
++iter
)
{ .... }
2b) The same, but wrapped via a macro:
forAllConstIters(lookup, iter)
{ .... }
Note that in many cases it is possible to simply use a range-based for.
Eg,
labelList myList;
for (auto val : myList)
{ ... }
for (const auto& val : myList)
{ ... }
These however will not work with any of the OpenFOAM hash-tables,
since the standard C++ concept of an iterator would return a key,value
pair when deferencing the *iter.
The deduction methods also exhibits some slightly odd behaviour with
some PtrLists (needs some more investigation).
- make construct from UList explicit and provide corresponding
assignment operator.
- add construct,insert,set,assignment from FixedList.
This is convenient when dealing with things like edges or triFaces.
- explicitly mention the value-initialized status for the operator().
This means that the following code will properly use an initialized
zero.
HashTable<label> regionCount;
if (...)
regionCount("region1")++;
... and also this;
if (regionCount("something") > 0)
{
...
}
Note that the OpenFOAM HashTable uses operator[] to provide read and
write access to *existing* entries and will provoke a FatalError if
the entry does not exist.
The operator() provides write access to *existing* entries or will
create the new entry as required.
The STL hashes use operator[] for this purpose.
- more hash-like methods.
Eg, insert/erase via lists, clear(), empty(),...
- minVertex(), maxVertex() to return the smallest/largest label used
- improved documentation, more clarification about where/how negative
point labels are treated.
This tutorial demonstrates moving mesh and AMI with a Lagrangian cloud.
It is very slow, as interaction lists (required to compute collisions)
are not optimised for moving meshes. The simulation time has therefore
been made very short, so that it finishes in a reasonable time. The
mixer only completes a small fraction of a rotation in this time. This
is still sufficient to test tracking and collisions in the presence of
AMI and mesh motion.
In order to generate a convincing animation, however, the end time must
be increased and the simulation run for a number of days.
and the continuous-phase simulation type
For LTS and steady-state simulations the transient option does not need to be
provided as only steady-state tracking is appropriate. For transient running
the Lagrangian tracking may be steady or transient.
The evolution of a KinematicParcel happens in three stages; (1) tracking
across the cell, (2) interaction with the face or patch that has been
hit, and (3) clculation and and update of parcel and cell properties.
The KinematicParcel used to evolve in this order, as steps 1 and 2 were
part of the same lower level method. This meant that the update stage
was done after interacting with the face, meaning the parcel was not in
the cell that had just been tracked through, or, by means of a patch
interaction, had been modified such that it was no longer representative
of the track through the cell.
With the separation of stages 1 and 2 in the base class, it is now
possible to do the update stage before interacting with the face (i.e.,
proceeding in the order 1, 3, 2). This makes the state consistent for
the updates, and avoids the issues described.
Patch contributed by Timo Niemi, VTT.
This resolves bug report https://bugs.openfoam.org/view.php?id=2282
Particle collisions with ACMI patches are now handled. The hit detects
whether the location is within the overlap or the coupled region and
recurses, calling the hit routine appropriate for the region.
The low level tracking methods are now more consistently named. There is
now a distinction between tracking to a face and hitting it. Function
object side effects have been moved out of the base layer and into the
parcels on which they are meaningful.
The TrackData::switchProcessor flag was not being set for some of the
tracking steps made by the more complicated parcels. In the case that a
parcel starts the step already on a processor boundary, this sometimes
lead to the particle being transferred back and forth indefinitely. The
flag is now explicitly set in all cases.
Tracking through an inverted region of the mesh happens in a reversed
direction relative to a non-inverted region. Usually, this allows the
tracking to propagate normally, regardless of the sign of the space.
However, in rare cases, it is possible for a straight trajectory to form
a closed loop through both positive and negative regions. This causes
the tracking to loop indefinitely.
To fix this, the displacement through inverted regions has been
artifically increased by a small amount (1% at the moment). This has the
effect that the change in track fraction over the negative part of the
loop no longer exactly cancels the change over the positive part, and
the track therefore terminates.
The KinematicCloud::patchData method has been made consistent on moving
meshes and/or when the time-step is being sub-cycled.
It has also been altered to calculate the normal component of a moving
patch's velocity directly from the point motions. This prevents an
infinite loop occuring due to inconsistency between the velocity used to
calculate a rebound and that used when tracking.
Some minor style improvements to the particle class have also been made.
The particle collector was collecting some particles twice due to a
tolerance extending the tracked path. This has been removed. The new
tracking algorithm does not generate the same sorts of spurious
tolerance-scale motions that the old one did, so this extension of the
tracking path is unnecessary.
Some particles were also not being collected at all as they were hitting
a diagonal of the collection polygon and registering as not having hit
either of the adjacent triangles. The hit criteria has been rewritten. A
hit now occurs when the normals of the triangles created by joining the
intersection point with the polygon edges are all in the same direction
as the overall polygon normal. This calculation is not affected by the
polygon's diagonals.
The issue was raised by, and resolved with support from, Karl Meredith
at FM Global.
This resolves bug-report https://bugs.openfoam.org/view.php?id=2595
This change changes the point-tetIndices-face interpolation function
method to take barycentric-tetIndices-face arguments instead. This
function is, at present, only used for interpolating Eulerian data to
Lagrangian particles.
This change prevents an inefficiency in cellPointInterpolation whereby
the position of the particle is calculated from it's barycentric
coordinates, before immediately being converted back to barycentric
coordinates to perform the interpolation.
The averaging methods now take the particle barycentric coordinates as
inputs rather than global positions. This change significantly optimises
Dual averaging, which is the most commonly used method. The run time of
the lagrangian/MPPICFoam/Goldschmidt tutorial has been reduced by a
factor of about two.