Compare commits

..

1 Commits

Author SHA1 Message Date
54dcde5f9a INT: compressibleInterFoam: assimilate DyM solver
Based on changes from openfoam.org
2024-05-01 16:44:42 +01:00
12502 changed files with 48641 additions and 174857 deletions

3
.gitignore vendored
View File

@ -11,7 +11,6 @@
# File-browser settings - anywhere
.directory
.DS_Store # OSX app store
# Backup/recovery versions - anywhere
.#*
@ -39,8 +38,6 @@ linux*Gcc*/
linux*Icc*/
solaris*Gcc*/
SunOS*Gcc*/
darwin*Clang*/
darwin*Gcc*/
platforms/
# Top-level build directories

View File

@ -49,10 +49,10 @@
<!--
Providing details of your set-up can help us identify any issues, e.g.
OpenFOAM version : v2506|v2412|v2406|v2312|v2306 etc
Operating system : ubuntu|openSUSE|RedHat etc
OpenFOAM version : v2312|v2306|v2212|v2206|v2112 etc
Operating system : ubuntu|openSUSE|centos etc
Hardware info : any info that may help?
Compiler : gcc|clang etc
Compiler : gcc|intel|clang etc
-->
- OpenFOAM version :

9
.gitmodules vendored
View File

@ -1,8 +1,8 @@
[submodule "cfmesh"]
path = plugins/cfmesh
path = modules/cfmesh
url = https://develop.openfoam.com/Community/integration-cfmesh.git
[submodule "avalanche"]
path = plugins/avalanche
path = modules/avalanche
url = https://develop.openfoam.com/Community/avalanche.git
[submodule "adios"]
path = modules/adios
@ -18,8 +18,5 @@
path = modules/external-solver
url = https://develop.openfoam.com/Modules/external-solver.git
[submodule "turbulence-community"]
path = plugins/turbulence-community
path = modules/turbulence-community
url = https://gitlab.com/openfoam/community/tc-turbulence/turbulence-community.git
[submodule "plugins/data-community"]
path = plugins/data-community
url = https://gitlab.com/openfoam/community/sig-data-modelling/data-community.git

View File

@ -68,34 +68,19 @@ src/Allwmake $targetType $*
# OpenFOAM applications
applications/Allwmake $targetType $*
#------------------------------------------------------------------------------
# Additional components
# Additional components/modules
case "$FOAM_MODULE_PREFIX" in
(false | none)
echo ========================================
echo "OpenFOAM modules disabled (prefix=${FOAM_MODULE_PREFIX})"
echo "Can be built separately:"
echo
echo " ./Allwmake-modules -prefix=..."
echo
echo ========================================
echo
;;
(*)
# Use wmake -all instead of Allwmake to allow for overrides
( cd "$WM_PROJECT_DIR/modules" 2>/dev/null && wmake -all )
echo ========================================
echo "The optional plugins can be built separately:"
echo
echo " ./Allwmake-plugins -prefix=..."
echo
echo ========================================
echo
esac
#------------------------------------------------------------------------------
# Count files in given directory. Ignore "Test-*" binaries.
_foamCountDirEntries()
{

View File

@ -1,39 +0,0 @@
#!/bin/sh
cd "${0%/*}" || exit # Run from this directory
set -- -all="${0##*/}" "$@" # Execute this instead of ./Allwmake
# Run from OPENFOAM top-level directory only
wmake -check-dir "$WM_PROJECT_DIR" 2>/dev/null || {
echo "Error (${0##*/}) : not located in \$WM_PROJECT_DIR"
echo " Check your OpenFOAM environment and installation"
exit 1
}
if [ -f "$WM_PROJECT_DIR"/wmake/scripts/AllwmakeParseArguments ]
then . "$WM_PROJECT_DIR"/wmake/scripts/AllwmakeParseArguments || \
echo "Argument parse error"
else
echo "Error (${0##*/}) : WM_PROJECT_DIR appears to be incorrect"
echo " Check your OpenFOAM environment and installation"
exit 1
fi
#------------------------------------------------------------------------------
# Additional components
case "$FOAM_MODULE_PREFIX" in
(false | none)
echo ========================================
echo "OpenFOAM modules disabled (prefix=${FOAM_MODULE_PREFIX})"
echo "Can be built separately:"
echo
echo " ./Allwmake-modules -prefix=..."
echo
echo ========================================
echo
;;
(*)
# Use wmake -all instead of Allwmake to allow for overrides
( cd "$WM_PROJECT_DIR/modules" 2>/dev/null && wmake -all $* )
esac
#------------------------------------------------------------------------------

View File

@ -1,39 +0,0 @@
#!/bin/sh
cd "${0%/*}" || exit # Run from this directory
set -- -all="${0##*/}" "$@" # Execute this instead of ./Allwmake
# Run from OPENFOAM top-level directory only
wmake -check-dir "$WM_PROJECT_DIR" 2>/dev/null || {
echo "Error (${0##*/}) : not located in \$WM_PROJECT_DIR"
echo " Check your OpenFOAM environment and installation"
exit 1
}
if [ -f "$WM_PROJECT_DIR"/wmake/scripts/AllwmakeParseArguments ]
then . "$WM_PROJECT_DIR"/wmake/scripts/AllwmakeParseArguments || \
echo "Argument parse error"
else
echo "Error (${0##*/}) : WM_PROJECT_DIR appears to be incorrect"
echo " Check your OpenFOAM environment and installation"
exit 1
fi
#------------------------------------------------------------------------------
# Additional components
case "$FOAM_MODULE_PREFIX" in
(false | none)
echo ========================================
echo "OpenFOAM plugins disabled (prefix=${FOAM_MODULE_PREFIX})"
echo "Can be built separately:"
echo
echo " ./Allwmake-plugins -prefix=..."
echo
echo ========================================
echo
;;
(*)
# Use wmake -all instead of Allwmake to allow for overrides
( cd "$WM_PROJECT_DIR/plugins" 2>/dev/null && wmake -all $* )
esac
#------------------------------------------------------------------------------

View File

@ -27,7 +27,6 @@ It is likely incomplete...
- Bernhard Gschaider
- Andrew Heather
- David Hill
- Crist<73>bal Ib<49><62>ez
- Yoshiaki Inoue
- Mattijs Janssens
- Andrew Jackson

View File

@ -1,2 +1,2 @@
api=2507
patch=0
api=2402
patch=240220

View File

@ -40,9 +40,9 @@ Violations of the Trademark are monitored, and will be duly prosecuted.
If OpenFOAM has already been compiled on your system, simply source
the appropriate `etc/bashrc` or `etc/cshrc` file and get started.
For example, for the OpenFOAM-v2506 version:
For example, for the OpenFOAM-v2312 version:
```
source /installation/path/OpenFOAM-v2506/etc/bashrc
source /installation/path/OpenFOAM-v2312/etc/bashrc
```
## Compiling OpenFOAM
@ -127,8 +127,8 @@ These 3rd-party sources are normally located in a directory parallel
to the OpenFOAM directory. For example,
```
/path/parent
|-- OpenFOAM-v2506
\-- ThirdParty-v2506
|-- OpenFOAM-v2312
\-- ThirdParty-v2312
```
There are, however, many cases where this simple convention is inadequate:
@ -136,7 +136,7 @@ There are, however, many cases where this simple convention is inadequate:
operating system or cluster installation provides it)
* When we have changed the OpenFOAM directory name to some arbitrary
directory name, e.g. openfoam-sandbox2412, etc..
directory name, e.g. openfoam-sandbox2312, etc..
* When we would like any additional 3rd party software to be located
inside of the OpenFOAM directory to ensure that the installation is
@ -156,9 +156,9 @@ when locating the ThirdParty directory with the following precedence:
2. PREFIX/ThirdParty-VERSION
* this corresponds to the traditional approach
3. PREFIX/ThirdParty-vAPI
* allows for an updated value of VERSION, *eg*, `v2506-myCustom`,
* allows for an updated value of VERSION, *eg*, `v2312-myCustom`,
without requiring a renamed ThirdParty. The API value would still
be `2412` and the original `ThirdParty-v2506/` would be found.
be `2312` and the original `ThirdParty-v2312/` would be found.
4. PREFIX/ThirdParty-API
* same as the previous example, but using an unadorned API value.
5. PREFIX/ThirdParty-common
@ -213,4 +213,4 @@ ThirdParty directory will contain either an `Allwmake` file or a
- [Governance](http://www.openfoam.com/governance/), [Governance Projects](https://www.openfoam.com/governance/projects)
- [Contacting OpenCFD](http://www.openfoam.com/contact/)
Copyright 2016-2024 OpenCFD Ltd
Copyright 2016-2023 OpenCFD Ltd

View File

@ -13,13 +13,7 @@ volVectorField U
);
// Initialise the velocity internal field to zero
// Note: explicitly bypass evaluation of contraint patch overrides
// (e.g. swirlFanVelocity might lookup phi,rho)
//U = Zero;
{
U.internalFieldRef() = Zero;
U.boundaryFieldRef() = Zero;
}
U = dimensionedVector(U.dimensions(), Zero);
surfaceScalarField phi
(

View File

@ -36,13 +36,11 @@ Description
if (adjustTimeStep)
{
scalar maxDeltaTFact = maxCo/(CoNum + StCoNum + SMALL);
const scalar deltaTFact =
Foam::min(Foam::min(maxDeltaTFact, 1.0 + 0.1*maxDeltaTFact), 1.2);
scalar deltaTFact = min(min(maxDeltaTFact, 1.0 + 0.1*maxDeltaTFact), 1.2);
runTime.setDeltaT
(
Foam::min
min
(
deltaTFact*runTime.deltaTValue(),
maxDeltaT

View File

@ -1,6 +1,5 @@
if (adjustTimeStep)
{
runTime.setDeltaT(Foam::min(dtChem, maxDeltaT));
runTime.setDeltaT(min(dtChem, maxDeltaT));
Info<< "deltaT = " << runTime.deltaTValue() << endl;
}

View File

@ -54,18 +54,9 @@ if (adjustTimeStep)
runTime.setDeltaT
(
Foam::min
min
(
dt0
* Foam::min
(
Foam::min
(
TFactorFluid,
Foam::min(TFactorFilm, TFactorSolid)
),
1.2
),
dt0*min(min(TFactorFluid, min(TFactorFilm, TFactorSolid)), 1.2),
maxDeltaT
)
);

View File

@ -21,11 +21,6 @@
+ fvOptions(rho, he)
);
if (MRF.active())
{
EEqn += fvc::div(MRF.phi(), p);
}
EEqn.relax();
fvOptions.constrain(EEqn);

View File

@ -6,7 +6,7 @@
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2013-2016 OpenFOAM Foundation
Copyright (C) 2020,2025 OpenCFD Ltd.
Copyright (C) 2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -57,23 +57,11 @@ License
// (relative to reference value)
scalar alphaY(pimpleDict.getOrDefault<scalar>("alphaY", 1.0));
// The old reciprocal time scale field, with any damping factor
tmp<volScalarField> rDeltaT0_damped;
// Calculate damped value before applying any other changes
if
(
rDeltaTDampingCoeff < 1
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT0_damped = (scalar(1) - rDeltaTDampingCoeff)*(rDeltaT);
}
Info<< "Time scales min/max:" << endl;
// Cache old reciprocal time scale field
volScalarField rDeltaT0("rDeltaT0", rDeltaT);
// Flow time scale
{
rDeltaT.ref() =
@ -82,14 +70,12 @@ License
/((2*maxCo)*mesh.V()*rho())
);
// Limit the largest time scale (=> smallest reciprocal time)
rDeltaT.clamp_min(1/maxDeltaT);
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
// Limit the largest time scale
rDeltaT.max(1/maxDeltaT);
Info<< " Flow = "
<< limits.min() << ", " << limits.max() << endl;
<< 1/gMax(rDeltaT.primitiveField()) << ", "
<< 1/gMin(rDeltaT.primitiveField()) << endl;
}
// Heat release rate time scale
@ -100,13 +86,11 @@ License
mag(Qdot)/(alphaTemp*rho*thermo.Cp()*T)
);
rDeltaT.primitiveFieldRef().clamp_min(rDeltaTT);
auto limits = gMinMax(rDeltaTT.field());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< " Temperature = "
<< limits.min() << ", " << limits.max() << endl;
<< 1/(gMax(rDeltaTT.field()) + VSMALL) << ", "
<< 1/(gMin(rDeltaTT.field()) + VSMALL) << endl;
rDeltaT.ref() = max(rDeltaT(), rDeltaTT);
}
// Reaction rate time scale
@ -154,13 +138,11 @@ License
if (foundY)
{
rDeltaT.primitiveFieldRef().clamp_min(rDeltaTY);
auto limits = gMinMax(rDeltaTY.field());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< " Composition = "
<< limits.min() << ", " << limits.max() << endl;
<< 1/(gMax(rDeltaTY.field()) + VSMALL) << ", "
<< 1/(gMin(rDeltaTY.field()) + VSMALL) << endl;
rDeltaT.ref() = max(rDeltaT(), rDeltaTY);
}
else
{
@ -179,22 +161,28 @@ License
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
}
// Limit rate of change of time scale (=> smallest reciprocal time)
// Limit rate of change of time scale
// - reduce as much as required
// - only increase at a fraction of old time scale
if (rDeltaT0_damped)
if
(
rDeltaTDampingCoeff < 1
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT.clamp_min(rDeltaT0_damped());
rDeltaT = max
(
rDeltaT,
(scalar(1) - rDeltaTDampingCoeff)*rDeltaT0
);
}
// Update tho boundary values of the reciprocal time-step
rDeltaT.correctBoundaryConditions();
auto limits = gMinMax(rDeltaT.field());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< " Overall = "
<< limits.min() << ", " << limits.max() << endl;
<< 1/gMax(rDeltaT.primitiveField())
<< ", " << 1/gMin(rDeltaT.primitiveField()) << endl;
}

View File

@ -6,7 +6,7 @@
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2015 OpenFOAM Foundation
Copyright (C) 2020,2025 OpenCFD Ltd.
Copyright (C) 2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -106,7 +106,7 @@ Foam::smoluchowskiJumpTFvPatchScalarField::smoluchowskiJumpTFvPatchScalarField
if (!this->readValueEntry(dict))
{
// Fallback: set to the internal field
this->extrapolateInternal();
fvPatchField<scalar>::patchInternalField(*this);
}
refValue() = *this;

View File

@ -23,11 +23,7 @@
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
{
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< "Flow time scale min/max = "
<< limits.min() << ", " << limits.max() << endl;
}
Info<< "Flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
}

View File

@ -20,11 +20,6 @@
fvOptions(rho, he)
);
if (MRF.active())
{
EEqn += fvc::div(MRF.phi(), p);
}
EEqn.relax();
fvOptions.constrain(EEqn);

View File

@ -52,26 +52,18 @@
// Update the boundary values of the reciprocal time-step
rDeltaT.correctBoundaryConditions();
{
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< "Flow time scale min/max = "
<< limits.min() << ", " << limits.max() << endl;
}
Info<< "Flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
if (rDeltaTSmoothingCoeff < 1.0)
{
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
}
{
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< "Smoothed flow time scale min/max = "
<< limits.min() << ", " << limits.max() << endl;
}
Info<< "Smoothed flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
// Limit rate of change of time scale
// - reduce as much as required
@ -86,10 +78,8 @@
rDeltaT0
*max(rDeltaT/rDeltaT0, scalar(1) - rDeltaTDampingCoeff);
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< "Damped flow time scale min/max = "
<< limits.min() << ", " << limits.max() << endl;
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
}
}

View File

@ -14,11 +14,6 @@
fvOptions(rho, he)
);
if (MRF.active())
{
EEqn += fvc::div(MRF.phi(), p);
}
EEqn.relax();
fvOptions.constrain(EEqn);

View File

@ -9,11 +9,6 @@
fvOptions(rho, e)
);
if (MRF.active())
{
EEqn += fvc::div(MRF.phi(), p);
}
EEqn.relax();
fvOptions.constrain(EEqn);

View File

@ -1,7 +1,7 @@
scalar CoNum = -GREAT;
forAll(fluidRegions, regionI)
{
CoNum = Foam::max
CoNum = max
(
compressibleCourantNo
(

View File

@ -78,8 +78,8 @@
}
rho = thermo.rho();
rho.clamp_range(rhoMin[i], rhoMax[i]);
rho = max(rho, rhoMin[i]);
rho = min(rho, rhoMax[i]);
rho.relax();
Info<< "Min/max rho:" << min(rho).value() << ' '

View File

@ -387,18 +387,15 @@ updateCoeffs()
{
scalar Q = gSum(kappa(Tp)*patch().magSf()*snGrad());
auto limits = gMinMax(Tp);
auto avg = gAverage(Tp);
Info<< "T solid : " << nl << endl;
Info<< "T solid : " << nl << endl;
Info
<< " heat transfer rate from solid:" << Q
<< " walltemperature "
<< " min:" << limits.min()
<< " max:" << limits.max()
<< " avg:" << avg << nl
<< endl;
Info
<< " heat transfer rate from solid:" << Q
<< " walltemperature "
<< " min:" << gMin(Tp)
<< " max:" << gMax(Tp)
<< " avg:" << gAverage(Tp) << nl
<< endl;
}
}
else if (regionType_ == fluid)
@ -448,16 +445,10 @@ updateCoeffs()
scalarField qLiq((Tp - Tc)*KdeltaLiq);
scalarField qVap((Tp - Tv.patchInternalField())*KdeltaVap);
auto infoT = gMinMax(Tp);
auto avgT = gAverage(Tp);
auto infoLiq = gMinMax(qLiq);
auto infoVap = gMinMax(qVap);
Info<< "T flow : " << nl << endl;
Info<< " qLiq: " << infoLiq.min() << " - " << infoLiq.max() << nl
<< " qVap: " << infoVap.min() << " - " << infoVap.max() << nl;
Info<< " qLiq: " << gMin(qLiq) << " - " << gMax(qLiq) << endl;
Info<< " qVap: " << gMin(qVap) << " - " << gMax(qVap) << endl;
scalar QLiq = gSum(qLiq*patch().magSf());
scalar QVap = gSum(qVap*patch().magSf());
@ -466,9 +457,9 @@ updateCoeffs()
Info<< " Heat transfer to Vap: " << QVap << endl;
Info<< " walltemperature "
<< " min:" << infoT.min()
<< " max:" << infoT.max()
<< " avg:" << avgT
<< " min:" << gMin(Tp)
<< " max:" << gMax(Tp)
<< " avg:" << gAverage(Tp)
<< endl;
}
}

View File

@ -31,7 +31,7 @@
);
scalar regionCoNum =
CoNum =
0.5*gMax
(
sumPhi/fluidRegions[regioni].V().field()
@ -41,9 +41,9 @@
(
fvc::surfaceSum(mag(phi1 - phi2))().primitiveField()
/ fluidRegions[regioni].V().field()
)*runTime.deltaTValue();
)*runTime.deltaTValue(),
CoNum = Foam::max(CoNum, Foam::max(regionCoNum, UrCoNum));
CoNum = max(UrCoNum, CoNum);
}
}

View File

@ -8,13 +8,11 @@
volVectorField& U1 = phase1.URef();
surfaceScalarField& phi1 = phase1.phiRef();
const tmp<surfaceScalarField> talphaPhi1 = phase1.alphaPhi();
const auto& alphaPhi1 = talphaPhi1();
const surfaceScalarField& alphaPhi1 = phase1.alphaPhi();
volVectorField& U2 = phase2.URef();
surfaceScalarField& phi2 = phase2.phiRef();
const tmp<surfaceScalarField> talphaPhi2 = phase2.alphaPhi();
const auto& alphaPhi2 = talphaPhi2();
const surfaceScalarField& alphaPhi2 = phase2.alphaPhi();
surfaceScalarField& phi = fluid.phi();

View File

@ -2,7 +2,7 @@
forAll(fluidRegions, regioni)
{
CoNum = Foam::max
CoNum = max
(
compressibleCourantNo
(
@ -17,7 +17,7 @@
/*
forAll(porousFluidRegions, porousi)
{
CoNum = Foam::max
CoNum = max
(
compressibleCourantNo
(

View File

@ -47,10 +47,10 @@ if (adjustTimeStep)
runTime.setDeltaT
(
Foam::min
min
(
Foam::min(maxCo/CoNum, maxDi/DiNum)*runTime.deltaTValue(),
Foam::min(runTime.deltaTValue(), maxDeltaT)
min(maxCo/CoNum, maxDi/DiNum)*runTime.deltaTValue(),
min(runTime.deltaTValue(), maxDeltaT)
)
);
Info<< "deltaT = " << runTime.deltaTValue() << endl;

View File

@ -48,14 +48,18 @@ if (adjustTimeStep)
scalar maxDeltaTFluid = maxCo/(CoNum + SMALL);
scalar maxDeltaTSolid = maxDi/(DiNum + SMALL);
const scalar deltaTFluid =
Foam::min(Foam::min(maxDeltaTFluid, 1.0 + 0.1*maxDeltaTFluid), 1.2);
scalar deltaTFluid =
min
(
min(maxDeltaTFluid, 1.0 + 0.1*maxDeltaTFluid),
1.2
);
runTime.setDeltaT
(
Foam::min
min
(
Foam::min(deltaTFluid, maxDeltaTSolid)*runTime.deltaTValue(),
min(deltaTFluid, maxDeltaTSolid)*runTime.deltaTValue(),
maxDeltaT
)
);

View File

@ -22,7 +22,7 @@ forAll(solidRegions, i)
tmp<volScalarField> trho = thermo.rho();
const volScalarField& rho = trho();
DiNum = Foam::max
DiNum = max
(
solidRegionDiffNo
(

View File

@ -17,7 +17,7 @@ scalar DiNum = -GREAT;
tmp<volScalarField> trho = thermo.rho();
const volScalarField& rho = trho();
DiNum = Foam::max
DiNum = max
(
solidRegionDiffNo
(

View File

@ -60,10 +60,13 @@ template<class Type>
void zeroCells
(
GeometricField<Type, fvPatchField, volMesh>& vf,
const labelUList& cells
const labelList& cells
)
{
UIndirectList<Type>(vf.primitiveField(), cells) = Zero;
forAll(cells, i)
{
vf[cells[i]] = Zero;
}
}

View File

@ -103,8 +103,8 @@ dimensionedScalar alphaMax
laminarTransport
);
const labelUList& inletCells = mesh.boundary()["inlet"].faceCells();
//const labelUList& outletCells = mesh.boundary()["outlet"].faceCells();
const labelList& inletCells = mesh.boundary()["inlet"].faceCells();
//const labelList& outletCells = mesh.boundary()["outlet"].faceCells();
volScalarField alpha
(

View File

@ -33,12 +33,7 @@ Description
\*---------------------------------------------------------------------------*/
{
const DimensionedField<scalar, volMesh> contErr
(
interpolatedCells.internalField()
*cellMask.internalField()
*fvc::div(phi)().internalField()
);
volScalarField contErr(interpolatedCells*cellMask*fvc::div(phi));
scalar sumLocalContErr = runTime.deltaTValue()*
mag(contErr)().weightedAverage(mesh.V()).value();

View File

@ -55,7 +55,7 @@ if (mesh.changing())
dimensionedScalar rAUf("rAUf", dimTime, 1.0);
const cellCellStencilObject& overlap = Stencil::New(mesh);
const labelUList& cellTypes = overlap.cellTypes();
const labelList& cellTypes = overlap.cellTypes();
const labelIOList& zoneIDs = overlap.zoneID();
while (pimple.correctNonOrthogonal())

View File

@ -36,26 +36,18 @@
// Update the boundary values of the reciprocal time-step
rDeltaT.correctBoundaryConditions();
{
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< "Flow time scale min/max = "
<< limits.min() << ", " << limits.max() << endl;
}
Info<< "Flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
if (rDeltaTSmoothingCoeff < 1.0)
{
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
}
{
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< "Smoothed flow time scale min/max = "
<< limits.min() << ", " << limits.max() << endl;
}
Info<< "Smoothed flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
// Limit rate of change of time scale
// - reduce as much as required
@ -70,10 +62,8 @@
rDeltaT0
*max(rDeltaT/rDeltaT0, scalar(1) - rDeltaTDampingCoeff);
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< "Damped flow time scale min/max = "
<< limits.min() << ", " << limits.max() << endl;
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
}
}

View File

@ -5,17 +5,13 @@ EXE_INC = \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-lsampling \
-ldynamicMesh \
-ldynamicFvMesh \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels \

View File

@ -33,12 +33,7 @@ Description
\*---------------------------------------------------------------------------*/
{
const DimensionedField<scalar, volMesh> contErr
(
interpolatedCells.internalField()
*cellMask.internalField()
*fvc::div(phi)().internalField()
);
volScalarField contErr(interpolatedCells*cellMask*fvc::div(phi));
scalar sumLocalContErr = runTime.deltaTValue()*
mag(contErr)().weightedAverage(mesh.V()).value();

View File

@ -64,7 +64,6 @@ Description
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "simpleControl.H"
@ -84,7 +83,7 @@ int main(int argc, char *argv[])
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"
#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "initContinuityErrs.H"
@ -99,14 +98,6 @@ int main(int argc, char *argv[])
{
Info<< "Time = " << runTime.timeName() << nl << endl;
// Do any mesh changes
mesh.controlledUpdate();
if (mesh.changing())
{
MRF.update();
}
// --- Pressure-velocity SIMPLE corrector
{
#include "UEqn.H"

View File

@ -6,7 +6,7 @@
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2020,2025 OpenCFD Ltd.
Copyright (C) 2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -54,22 +54,11 @@ License
scalar alphaTemp(pimpleDict.getOrDefault("alphaTemp", 0.05));
// The old reciprocal time scale field, with any damping factor
tmp<volScalarField> rDeltaT0_damped;
// Calculate damped value before applying any other changes
if
(
rDeltaTDampingCoeff < 1
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT0_damped = (scalar(1) - rDeltaTDampingCoeff)*(rDeltaT);
}
Info<< "Time scales min/max:" << endl;
// Cache old reciprocal time scale field
volScalarField rDeltaT0("rDeltaT0", rDeltaT);
// Flow time scale
{
rDeltaT.ref() =
@ -78,14 +67,12 @@ License
/((2*maxCo)*mesh.V()*rho())
);
// Limit the largest time scale (=> smallest reciprocal time)
rDeltaT.clamp_min(1/maxDeltaT);
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
// Limit the largest time scale
rDeltaT.max(1/maxDeltaT);
Info<< " Flow = "
<< limits.min() << ", " << limits.max() << endl;
<< gMin(1/rDeltaT.primitiveField()) << ", "
<< gMax(1/rDeltaT.primitiveField()) << endl;
}
// Reaction source time scale
@ -106,13 +93,15 @@ License
)
);
rDeltaT.primitiveFieldRef().clamp_min(rDeltaTT);
auto limits = gMinMax(rDeltaTT.field());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< " Temperature = "
<< limits.min() << ", " << limits.max() << endl;
<< gMin(1/(rDeltaTT.field() + VSMALL)) << ", "
<< gMax(1/(rDeltaTT.field() + VSMALL)) << endl;
rDeltaT.ref() = max
(
rDeltaT(),
rDeltaTT
);
}
// Update tho boundary values of the reciprocal time-step
@ -124,19 +113,25 @@ License
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
}
// Limit rate of change of time scale (=> smallest reciprocal time)
// Limit rate of change of time scale
// - reduce as much as required
// - only increase at a fraction of old time scale
if (rDeltaT0_damped)
if
(
rDeltaTDampingCoeff < 1.0
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT.clamp_min(rDeltaT0_damped());
rDeltaT = max
(
rDeltaT,
(scalar(1) - rDeltaTDampingCoeff)*rDeltaT0
);
}
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< " Overall = "
<< limits.min() << ", " << limits.max() << endl;
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
}

View File

@ -6,7 +6,7 @@
+ MRF.DDt(U)
+ turbulence->divDevReff(U)
==
invRhoInf*parcels.SU(U)
parcels.SU(U, true)
+ fvOptions(U)
);

View File

@ -39,11 +39,6 @@ dimensionedScalar rhoInfValue
laminarTransport
);
const dimensionedScalar invRhoInf
(
dimless/dimDensity, scalar(1)/rhoInfValue.value()
);
volScalarField rhoInf
(
IOobject

View File

@ -36,18 +36,13 @@ Description
if (adjustTimeStep)
{
const scalar maxDeltaTFact =
Foam::min
(
maxCo/(CoNum + SMALL),
maxCo/(surfaceFilm.CourantNumber() + SMALL)
);
min(maxCo/(CoNum + SMALL), maxCo/(surfaceFilm.CourantNumber() + SMALL));
const scalar deltaTFact =
Foam::min(Foam::min(maxDeltaTFact, 1.0 + 0.1*maxDeltaTFact), 1.2);
min(min(maxDeltaTFact, 1.0 + 0.1*maxDeltaTFact), 1.2);
runTime.setDeltaT
(
Foam::min
min
(
deltaTFact*runTime.deltaTValue(),
maxDeltaT

View File

@ -6,7 +6,7 @@
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2020,2025 OpenCFD Ltd.
Copyright (C) 2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -54,22 +54,11 @@ License
scalar alphaTemp(pimpleDict.getOrDefault("alphaTemp", 0.05));
// The old reciprocal time scale field, with any damping factor
tmp<volScalarField> rDeltaT0_damped;
// Calculate damped value before applying any other changes
if
(
rDeltaTDampingCoeff < 1
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT0_damped = (scalar(1) - rDeltaTDampingCoeff)*(rDeltaT);
}
Info<< "Time scales min/max:" << endl;
// Cache old reciprocal time scale field
volScalarField rDeltaT0("rDeltaT0", rDeltaT);
// Flow time scale
{
rDeltaT.ref() =
@ -78,14 +67,12 @@ License
/((2*maxCo)*mesh.V()*rho())
);
// Limit the largest time scale (=> smallest reciprocal time)
rDeltaT.clamp_min(1/maxDeltaT);
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
// Limit the largest time scale
rDeltaT.max(1/maxDeltaT);
Info<< " Flow = "
<< limits.min() << ", " << limits.max() << endl;
<< gMin(1/rDeltaT.primitiveField()) << ", "
<< gMax(1/rDeltaT.primitiveField()) << endl;
}
// Reaction source time scale
@ -105,13 +92,15 @@ License
)
);
rDeltaT.primitiveFieldRef().clamp_min(rDeltaTT);
auto limits = gMinMax(rDeltaTT.field());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< " Temperature = "
<< limits.min() << ", " << limits.max() << endl;
<< gMin(1/(rDeltaTT.field() + VSMALL)) << ", "
<< gMax(1/(rDeltaTT.field() + VSMALL)) << endl;
rDeltaT.ref() = max
(
rDeltaT(),
rDeltaTT
);
}
// Update the boundary values of the reciprocal time-step
@ -123,22 +112,25 @@ License
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
}
// Limit rate of change of time scale (=> smallest reciprocal time)
// Limit rate of change of time scale
// - reduce as much as required
// - only increase at a fraction of old time scale
if (rDeltaT0_damped)
if
(
rDeltaTDampingCoeff < 1.0
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT.clamp_min(rDeltaT0_damped());
rDeltaT = max
(
rDeltaT,
(scalar(1) - rDeltaTDampingCoeff)*rDeltaT0
);
}
// Update the boundary values of the reciprocal time-step
rDeltaT.correctBoundaryConditions();
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< " Overall = "
<< limits.min() << ", " << limits.max() << endl;
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
}

View File

@ -48,7 +48,8 @@ U.correctBoundaryConditions();
fvOptions.correct(U);
rho = thermo.rho();
rho.clamp_range(rhoMin, rhoMax);
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();
Info<< "p min/max = " << min(p).value() << ", " << max(p).value() << endl;

View File

@ -49,7 +49,8 @@
fvOptions.correct(U);
rho = thermo.rho();
rho.clamp_range(rhoMin, rhoMax);
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();
Info<< "p min/max = " << min(p).value() << ", " << max(p).value() << endl;

View File

@ -1,5 +1,6 @@
rho = thermo.rho();
rho.clamp_range(rhoMin, rhoMax);
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();
volScalarField rAU(1.0/UEqn.A());
@ -93,7 +94,8 @@ p.relax();
// Recalculate density from the relaxed pressure
rho = thermo.rho();
rho.clamp_range(rhoMin, rhoMax);
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();
Info<< "rho min/max : " << min(rho).value() << " " << max(rho).value() << endl;

View File

@ -1,5 +1,6 @@
rho = thermo.rho();
rho.clamp_range(rhoMin, rhoMax);
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();
volScalarField rAU(1.0/UEqn.A());
@ -93,7 +94,8 @@ p.relax();
// Recalculate density from the relaxed pressure
rho = thermo.rho();
rho.clamp_range(rhoMin, rhoMax);
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();
Info<< "rho min/max : " << min(rho).value() << " " << max(rho).value() << endl;

View File

@ -36,14 +36,13 @@ Description
if (adjustTimeStep)
{
scalar maxDeltaTFact =
Foam::min(maxCo/(CoNum + SMALL), maxAlphaCo/(alphaCoNum + SMALL));
min(maxCo/(CoNum + SMALL), maxAlphaCo/(alphaCoNum + SMALL));
const scalar deltaTFact =
Foam::min(Foam::min(maxDeltaTFact, 1.0 + 0.1*maxDeltaTFact), 1.2);
scalar deltaTFact = min(min(maxDeltaTFact, 1.0 + 0.1*maxDeltaTFact), 1.2);
runTime.setDeltaT
(
Foam::min
min
(
deltaTFact*runTime.deltaTValue(),
maxDeltaT

View File

@ -53,21 +53,6 @@
pimpleDict.getOrDefault<scalar>("maxDeltaT", GREAT)
);
// The old reciprocal time scale field, with any damping factor
tmp<volScalarField> rDeltaT0_damped;
// Calculate damped value before applying any other changes
if
(
rDeltaTDampingCoeff < 1
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT0_damped = (scalar(1) - rDeltaTDampingCoeff)*(rDeltaT);
}
volScalarField rDeltaT0("rDeltaT0", rDeltaT);
// Set the reciprocal time-step from the local Courant number
@ -98,13 +83,10 @@
// Update tho boundary values of the reciprocal time-step
rDeltaT.correctBoundaryConditions();
{
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< "Flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
Info<< "Flow time scale min/max = "
<< limits.min() << ", " << limits.max() << endl;
}
if (rDeltaTSmoothingCoeff < 1.0)
{
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
@ -128,25 +110,27 @@
fvc::sweep(rDeltaT, alpha1, nAlphaSweepIter, alphaSpreadDiff);
}
{
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< "Smoothed flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
Info<< "Smoothed flow time scale min/max = "
<< limits.min() << ", " << limits.max() << endl;
}
// Limit rate of change of time scale (=> smallest reciprocal time)
// Limit rate of change of time scale
// - reduce as much as required
// - only increase at a fraction of old time scale
if (rDeltaT0_damped)
if
(
rDeltaTDampingCoeff < 1.0
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT.clamp_min(rDeltaT0_damped());
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
rDeltaT = max
(
rDeltaT,
(scalar(1) - rDeltaTDampingCoeff)*rDeltaT0
);
Info<< "Damped flow time scale min/max = "
<< limits.min() << ", " << limits.max() << endl;
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
}
}

View File

@ -36,14 +36,13 @@ Description
if (adjustTimeStep)
{
scalar maxDeltaTFact =
Foam::min(maxCo/(CoNum + SMALL), maxAcousticCo/(acousticCoNum + SMALL));
min(maxCo/(CoNum + SMALL), maxAcousticCo/(acousticCoNum + SMALL));
const scalar deltaTFact =
Foam::min(Foam::min(maxDeltaTFact, 1.0 + 0.1*maxDeltaTFact), 1.2);
scalar deltaTFact = min(min(maxDeltaTFact, 1.0 + 0.1*maxDeltaTFact), 1.2);
runTime.setDeltaT
(
Foam::min
min
(
deltaTFact*runTime.deltaTValue(),
maxDeltaT

View File

@ -37,15 +37,11 @@ if (adjustTimeStep)
if (CoNum > SMALL)
{
scalar maxDeltaTFact =
Foam::min
(
maxCo/(CoNum + SMALL),
maxAcousticCo/(acousticCoNum + SMALL)
);
min(maxCo/(CoNum + SMALL), maxAcousticCo/(acousticCoNum + SMALL));
runTime.setDeltaT
(
Foam::min
min
(
maxDeltaTFact*runTime.deltaTValue(),
maxDeltaT

View File

@ -7,7 +7,6 @@ wclean libso surfaceTensionModels
wclean libso VoFphaseCompressibleTurbulenceModels
wclean
wclean compressibleInterDyMFoam
wclean compressibleInterFilmFoam
wclean compressibleInterIsoFoam

View File

@ -8,7 +8,6 @@ wmake $targetType surfaceTensionModels
wmake $targetType VoFphaseCompressibleTurbulenceModels
wmake $targetType
wmake $targetType compressibleInterDyMFoam
wmake $targetType compressibleInterFilmFoam
wmake $targetType compressibleInterIsoFoam
wmake $targetType overCompressibleInterDyMFoam

View File

@ -1,21 +1,25 @@
EXE_INC = \
-I../VoF \
-ItwoPhaseMixtureThermo \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-IVoFphaseCompressibleTurbulenceModels/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/phaseCompressible/lnInclude \
-IVoFphaseCompressibleTurbulenceModels/lnInclude
-I$(LIB_SRC)/TurbulenceModels/phaseCompressible/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-ldynamicMesh \
-ldynamicFvMesh \
-ltwoPhaseMixtureThermo \
-ltwoPhaseSurfaceTension \
-lcompressibleTransportModels \

View File

@ -74,11 +74,8 @@ Foam::compressibleInterPhaseTransportModel::compressibleInterPhaseTransportModel
const volScalarField& alpha1(mixture_.alpha1());
const volScalarField& alpha2(mixture_.alpha2());
const tmp<volScalarField> trho1 = mixture_.thermo1().rho();
const tmp<volScalarField> trho2 = mixture_.thermo2().rho();
const auto& rho1 = trho1();
const auto& rho2 = trho2();
const volScalarField& rho1 = mixture_.thermo1().rho();
const volScalarField& rho2 = mixture_.thermo2().rho();
alphaRhoPhi1_ =
(
@ -188,8 +185,8 @@ void Foam::compressibleInterPhaseTransportModel::correctPhasePhi()
{
if (twoPhaseTransport_)
{
const tmp<volScalarField> rho1 = mixture_.thermo1().rho();
const tmp<volScalarField> rho2 = mixture_.thermo2().rho();
const volScalarField& rho1 = mixture_.thermo1().rho();
const volScalarField& rho2 = mixture_.thermo2().rho();
alphaRhoPhi1_.ref() = fvc::interpolate(rho1)*alphaPhi10_;
alphaRhoPhi2_.ref() = fvc::interpolate(rho2)*(phi_ - alphaPhi10_);

View File

@ -26,12 +26,12 @@ forAll(dgdt, celli)
{
if (dgdt[celli] > 0.0)
{
Sp[celli] -= dgdt[celli]/Foam::max(1.0 - alpha1[celli], 1e-4);
Su[celli] += dgdt[celli]/Foam::max(1.0 - alpha1[celli], 1e-4);
Sp[celli] -= dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
Su[celli] += dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
}
else if (dgdt[celli] < 0.0)
{
Sp[celli] += dgdt[celli]/Foam::max(alpha1[celli], 1e-4);
Sp[celli] += dgdt[celli]/max(alpha1[celli], 1e-4);
}
}

View File

@ -1,3 +0,0 @@
compressibleInterDyMFoam.C
EXE = $(FOAM_APPBIN)/compressibleInterDyMFoam

View File

@ -1,35 +0,0 @@
EXE_INC = \
-I.. \
-I../../VoF \
-I../twoPhaseMixtureThermo \
-I../VoFphaseCompressibleTurbulenceModels/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/phaseCompressible/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-ltwoPhaseMixtureThermo \
-ltwoPhaseSurfaceTension \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lspecie \
-ltwoPhaseMixture \
-ltwoPhaseProperties \
-linterfaceProperties \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-lthermoTools \
-lVoFphaseCompressibleTurbulenceModels \
-ldynamicMesh \
-ldynamicFvMesh

View File

@ -1,43 +0,0 @@
volScalarField::Internal Sp
(
IOobject
(
"Sp",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar(dgdt.dimensions(), Zero)
);
volScalarField::Internal Su
(
IOobject
(
"Su",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar(dgdt.dimensions(), Zero)
);
forAll(dgdt, celli)
{
if (dgdt[celli] > 0.0 && alpha1[celli] > 0.0)
{
Sp[celli] -= dgdt[celli]*alpha1[celli];
Su[celli] += dgdt[celli]*alpha1[celli];
}
else if (dgdt[celli] < 0.0 && alpha1[celli] < 1.0)
{
Sp[celli] += dgdt[celli]*(1.0 - alpha1[celli]);
}
}
volScalarField::Internal divU
(
mesh.moving()
? fvc::div(phiCN() + mesh.phi())
: fvc::div(phiCN())
);

View File

@ -1,190 +0,0 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
compressibleInterDyMFoam
Description
Solver for two compressible, non-isothermal immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach,
with optional mesh motion and mesh topology changes including adaptive
re-meshing.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "CMULES.H"
#include "EulerDdtScheme.H"
#include "localEulerDdtScheme.H"
#include "CrankNicolsonDdtScheme.H"
#include "subCycle.H"
#include "compressibleInterPhaseTransportModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "CorrectPhi.H"
#include "fvcSmooth.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for two compressible, non-isothermal immiscible fluids"
" using VOF phase-fraction based interface capturing.\n"
"With optional mesh motion and mesh topology changes including"
" adaptive re-meshing."
);
#include "postProcess.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"
#include "initContinuityErrs.H"
#include "createDyMControls.H"
#include "createFields.H"
#include "createUf.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
volScalarField& p = mixture.p();
volScalarField& T = mixture.T();
const volScalarField& psi1 = mixture.thermo1().psi();
const volScalarField& psi2 = mixture.thermo2().psi();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readDyMControls.H"
// Store divU and divUp from the previous mesh so that it can be mapped
// and used in correctPhi to ensure the corrected phi has the
// same divergence
volScalarField divU("divU0", fvc::div(fvc::absolute(phi, U)));
volScalarField divUp("divUp", fvc::div(fvc::absolute(phi, U), p));
if (LTS)
{
#include "setRDeltaT.H"
}
else
{
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"
}
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
if (pimple.firstIter() || moveMeshOuterCorrectors)
{
scalar timeBeforeMeshUpdate = runTime.elapsedCpuTime();
mesh.update();
if (mesh.changing())
{
MRF.update();
Info<< "Execution time for mesh.update() = "
<< runTime.elapsedCpuTime() - timeBeforeMeshUpdate
<< " s" << endl;
gh = (g & mesh.C()) - ghRef;
ghf = (g & mesh.Cf()) - ghRef;
}
if ((mesh.changing() && correctPhi))
{
// Calculate absolute flux from the mapped surface velocity
phi = mesh.Sf() & Uf;
#include "correctPhi.H"
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
mixture.correct();
}
if (mesh.changing() && checkMeshCourantNo)
{
#include "meshCourantNo.H"
}
}
#include "alphaControls.H"
#include "compressibleAlphaEqnSubCycle.H"
turbulence.correctPhasePhi();
#include "UEqn.H"
#include "TEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence.correct();
}
}
rho = alpha1*rho1 + alpha2*rho2;
// Correct p_rgh for consistency with p and the updated densities
p_rgh = p - rho*gh;
p_rgh.correctBoundaryConditions();
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -1,145 +0,0 @@
{
volScalarField rAU("rAU", 1.0/UEqn.A());
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(HbyA)
+ MRF.zeroFilter(fvc::interpolate(rho*rAU)*fvc::ddtCorr(U, Uf))
);
MRF.makeRelative(phiHbyA);
surfaceScalarField phig
(
(
mixture.surfaceTensionForce()
- ghf*fvc::snGrad(rho)
)*rAUf*mesh.magSf()
);
phiHbyA += phig;
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF);
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phiHbyA, U);
tmp<fvScalarMatrix> p_rghEqnComp1;
tmp<fvScalarMatrix> p_rghEqnComp2;
if (pimple.transonic())
{
#include "rhofs.H"
surfaceScalarField phid1("phid1", fvc::interpolate(psi1)*phi);
surfaceScalarField phid2("phid2", fvc::interpolate(psi2)*phi);
p_rghEqnComp1 =
pos(alpha1)
*(
(
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
)/rho1
- fvc::ddt(alpha1) - fvc::div(alphaPhi1)
+ (alpha1/rho1)
*correction
(
psi1*fvm::ddt(p_rgh)
+ fvm::div(phid1, p_rgh) - fvm::Sp(fvc::div(phid1), p_rgh)
)
);
p_rghEqnComp1.ref().relax();
p_rghEqnComp2 =
pos(alpha2)
*(
(
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
)/rho2
- fvc::ddt(alpha2) - fvc::div(alphaPhi2)
+ (alpha2/rho2)
*correction
(
psi2*fvm::ddt(p_rgh)
+ fvm::div(phid2, p_rgh) - fvm::Sp(fvc::div(phid2), p_rgh)
)
);
p_rghEqnComp2.ref().relax();
}
else
{
p_rghEqnComp1 =
fvc::ddt(rho1) + psi1*correction(fvm::ddt(p_rgh))
+ fvc::div(phi, rho1) - fvc::Sp(fvc::div(phi), rho1);
p_rghEqnComp2 =
fvc::ddt(rho2) + psi2*correction(fvm::ddt(p_rgh))
+ fvc::div(phi, rho2) - fvc::Sp(fvc::div(phi), rho2);
}
// Cache p_rgh prior to solve for density update
volScalarField p_rgh_0(p_rgh);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix p_rghEqnIncomp
(
fvc::div(phiHbyA)
- fvm::laplacian(rAUf, p_rgh)
);
solve
(
(
(max(alpha1, scalar(0))/rho1)*p_rghEqnComp1()
+ (max(alpha2, scalar(0))/rho2)*p_rghEqnComp2()
)
+ p_rghEqnIncomp,
p_rgh.select(pimple.finalInnerIter())
);
if (pimple.finalNonOrthogonalIter())
{
p = max(p_rgh + (alpha1*rho1 + alpha2*rho2)*gh, pMin);
p_rgh = p - (alpha1*rho1 + alpha2*rho2)*gh;
dgdt =
(
pos(alpha2)*(p_rghEqnComp2 & p_rgh)/rho2
- pos(alpha1)*(p_rghEqnComp1 & p_rgh)/rho1
);
phi = phiHbyA + p_rghEqnIncomp.flux();
U = HbyA
+ rAU*fvc::reconstruct((phig + p_rghEqnIncomp.flux())/rAUf);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
}
{
Uf = fvc::interpolate(U);
surfaceVectorField n(mesh.Sf()/mesh.magSf());
Uf += n*(fvc::absolute(phi, U)/mesh.magSf() - (n & Uf));
}
// Update densities from change in p_rgh
mixture.thermo1().correctRho(psi1*(p_rgh - p_rgh_0));
mixture.thermo2().correctRho(psi2*(p_rgh - p_rgh_0));
rho = alpha1*rho1 + alpha2*rho2;
// Correct p_rgh for consistency with p and the updated densities
p = max(p_rgh + rho*gh, pMin);
p_rgh = p - rho*gh;
p_rgh.correctBoundaryConditions();
K = 0.5*magSqr(U);
}

View File

@ -210,7 +210,7 @@ void VoFPatchTransfer::correct
film().toRegion(patchi, Vp);
const polyPatch& pp = pbm[patchi];
const labelUList& faceCells = pp.faceCells();
const labelList& faceCells = pp.faceCells();
// Accumulate the total mass removed from patch
scalar dMassPatch = 0;

View File

@ -5,8 +5,8 @@
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) OpenCFD OpenCFD Ltd.
Copyright (C) 2011-2018 OpenFOAM Foundation
Copyright (C) 2024 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -32,7 +32,9 @@ Group
Description
Solver for two compressible, non-isothermal immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach.
(volume of fluid) phase-fraction based interface capturing approach,
with optional mesh motion and mesh topology changes including adaptive
re-meshing.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
@ -45,6 +47,7 @@ Description
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "CMULES.H"
#include "EulerDdtScheme.H"
#include "localEulerDdtScheme.H"
@ -53,6 +56,7 @@ Description
#include "compressibleInterPhaseTransportModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "CorrectPhi.H"
#include "fvcSmooth.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
@ -70,30 +74,31 @@ int main(int argc, char *argv[])
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createTimeControls.H"
#include "createDynamicFvMesh.H"
#include "initContinuityErrs.H"
#include "createDyMControls.H"
#include "createFields.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
#include "createUfIfPresent.H"
volScalarField& p = mixture.p();
volScalarField& T = mixture.T();
const volScalarField& psi1 = mixture.thermo1().psi();
const volScalarField& psi2 = mixture.thermo2().psi();
if (!LTS)
{
#include "readTimeControls.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readTimeControls.H"
#include "readDyMControls.H"
// Store divU from the previous mesh so that it can be mapped
// and used in correctPhi to ensure the corrected phi has the
// same divergence
volScalarField divU("divU0", fvc::div(fvc::absolute(phi, U)));
if (LTS)
{
@ -113,6 +118,44 @@ int main(int argc, char *argv[])
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
if (pimple.firstIter() || moveMeshOuterCorrectors)
{
scalar timeBeforeMeshUpdate = runTime.elapsedCpuTime();
mesh.update();
if (mesh.changing())
{
MRF.update();
Info<< "Execution time for mesh.update() = "
<< runTime.elapsedCpuTime() - timeBeforeMeshUpdate
<< " s" << endl;
gh = (g & mesh.C()) - ghRef;
ghf = (g & mesh.Cf()) - ghRef;
if (correctPhi)
{
// Calculate absolute flux
// from the mapped surface velocity
phi = mesh.Sf() & Uf();
#include "correctPhi.H"
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
mixture.correct();
}
if (checkMeshCourantNo)
{
#include "meshCourantNo.H"
}
}
}
#include "alphaControls.H"
#include "compressibleAlphaEqnSubCycle.H"

View File

@ -26,12 +26,12 @@ forAll(dgdt, celli)
{
if (dgdt[celli] > 0.0)
{
Sp[celli] -= dgdt[celli]/Foam::max(1.0 - alpha1[celli], 1e-4);
Su[celli] += dgdt[celli]/Foam::max(1.0 - alpha1[celli], 1e-4);
Sp[celli] -= dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
Su[celli] += dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
}
else if (dgdt[celli] < 0.0)
{
Sp[celli] += dgdt[celli]/Foam::max(alpha1[celli], 1e-4);
Sp[celli] += dgdt[celli]/max(alpha1[celli], 1e-4);
}
}

View File

@ -8,6 +8,4 @@ CorrectPhi
pimple
);
//***HGW phi.oldTime() = phi;
#include "continuityErrs.H"

View File

@ -26,12 +26,12 @@ forAll(dgdt, celli)
{
if (dgdt[celli] > 0.0)
{
Sp[celli] -= dgdt[celli]/Foam::max(1.0 - alpha1[celli], 1e-4);
Su[celli] += dgdt[celli]/Foam::max(1.0 - alpha1[celli], 1e-4);
Sp[celli] -= dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
Su[celli] += dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
}
else if (dgdt[celli] < 0.0)
{
Sp[celli] += dgdt[celli]/Foam::max(alpha1[celli], 1e-4);
Sp[celli] += dgdt[celli]/max(alpha1[celli], 1e-4);
}
}

View File

@ -6,7 +6,7 @@
(
"phiHbyA",
fvc::flux(HbyA)
+ MRF.zeroFilter(fvc::interpolate(rho*rAU)*fvc::ddtCorr(U, phi))
+ MRF.zeroFilter(fvc::interpolate(rho*rAU)*fvc::ddtCorr(U, phi, Uf))
);
MRF.makeRelative(phiHbyA);
@ -23,6 +23,9 @@
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF);
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phiHbyA, U);
tmp<fvScalarMatrix> p_rghEqnComp1;
tmp<fvScalarMatrix> p_rghEqnComp2;
@ -34,8 +37,7 @@
surfaceScalarField phid2("phid2", fvc::interpolate(psi2)*phi);
p_rghEqnComp1 =
pos(alpha1)
*(
(
(
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
@ -48,11 +50,9 @@
+ fvm::div(phid1, p_rgh) - fvm::Sp(fvc::div(phid1), p_rgh)
)
);
p_rghEqnComp1.ref().relax();
p_rghEqnComp2 =
pos(alpha2)
*(
(
(
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
@ -65,7 +65,6 @@
+ fvm::div(phid2, p_rgh) - fvm::Sp(fvc::div(phid2), p_rgh)
)
);
p_rghEqnComp2.ref().relax();
}
else
{
@ -94,6 +93,21 @@
);
}
if (mesh.moving())
{
p_rghEqnComp1.ref() += fvc::div(mesh.phi())*alpha1;
p_rghEqnComp2.ref() += fvc::div(mesh.phi())*alpha2;
}
p_rghEqnComp1.ref() *= pos(alpha1);
p_rghEqnComp2.ref() *= pos(alpha2);
if (pimple.transonic())
{
p_rghEqnComp1.ref().relax();
p_rghEqnComp2.ref().relax();
}
// Cache p_rgh prior to solve for density update
volScalarField p_rgh_0(p_rgh);
@ -131,6 +145,9 @@
}
}
// Correct Uf if the mesh is moving
fvc::correctUf(Uf, U, fvc::absolute(phi, U));
// Update densities from change in p_rgh
mixture.thermo1().correctRho(psi1*(p_rgh - p_rgh_0));
mixture.thermo2().correctRho(psi2*(p_rgh - p_rgh_0));

View File

@ -135,7 +135,7 @@ public:
virtual volScalarField& he()
{
NotImplemented;
return volScalarField::null().constCast();
return const_cast<volScalarField&>(volScalarField::null());
}
//- Enthalpy/Internal energy [J/kg]

View File

@ -1086,7 +1086,7 @@ void Foam::multiphaseMixtureThermo::solveAlphas
MULES::limitSum(alphaPhiCorrs);
rhoPhi_ = Zero;
rhoPhi_ = dimensionedScalar(dimensionSet(1, 0, -1, 0, 0), Zero);
volScalarField sumAlpha
(

View File

@ -243,7 +243,7 @@ public:
virtual volScalarField& he()
{
NotImplemented;
return volScalarField::null().constCast();
return const_cast<volScalarField&>(volScalarField::null());
}
//- Enthalpy/Internal energy [J/kg]

View File

@ -130,17 +130,10 @@ int main(int argc, char *argv[])
}
}
}
#include "UEqn.H"
#include "YEqns.H"
#include "TEqn.H"
if (pimple.frozenFlow())
{
continue;
}
#include "UEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{

View File

@ -63,11 +63,23 @@ Foam::DTRMParticle::DTRMParticle
{
is >> p0_ >> p1_ >> I0_ >> I_ >> dA_ >> transmissiveId_;
}
else if (!is.checkLabelSize<>() || !is.checkScalarSize<>())
{
// Non-native label or scalar size
is.beginRawRead();
readRawScalar(is, p0_.data(), vector::nComponents);
readRawScalar(is, p1_.data(), vector::nComponents);
readRawScalar(is, &I0_);
readRawScalar(is, &I_);
readRawScalar(is, &dA_);
readRawLabel(is, &transmissiveId_);
is.endRawRead();
}
else
{
// No non-native streaming
is.fatalCheckNativeSizes(FUNCTION_NAME);
is.read(reinterpret_cast<char*>(&p0_), sizeofFields_);
}
}

View File

@ -5,7 +5,7 @@
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2017-2025 OpenCFD Ltd.
Copyright (C) 2017-2023 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -557,7 +557,7 @@ void Foam::radiation::laserDTRM::calculate()
// Reset the field
Q_ == Zero;
Q_ == dimensionedScalar(Q_.dimensions(), Zero);
a_ = absorptionEmission_->a();
e_ = absorptionEmission_->e();
@ -679,7 +679,7 @@ void Foam::radiation::laserDTRM::calculate()
}
}
scalar totalQ = gWeightedSum(mesh_.V(), Q_.primitiveField());
scalar totalQ = gSum(Q_.primitiveFieldRef()*mesh_.V());
Info << "Total energy absorbed [W]: " << totalQ << endl;
if (mesh_.time().writeTime())

View File

@ -36,13 +36,13 @@ Description
if (adjustTimeStep)
{
scalar maxDeltaTFact =
Foam::min
min
(
maxCo/(CoNum + SMALL),
Foam::min
min
(
maxAlphaCo/(alphaCoNum + SMALL),
Foam::min
min
(
maxAlphaDdt/(ddtAlphaNum + SMALL),
maxDi/(DiNum + SMALL)
@ -50,18 +50,16 @@ if (adjustTimeStep)
)
);
const scalar deltaTFact =
Foam::min(Foam::min(maxDeltaTFact, 1.0 + 0.1*maxDeltaTFact), 1.2);
scalar deltaTFact = min(min(maxDeltaTFact, 1.0 + 0.1*maxDeltaTFact), 1.2);
runTime.setDeltaT
(
Foam::min
min
(
deltaTFact*runTime.deltaTValue(),
maxDeltaT
)
);
Info<< "deltaT = " << runTime.deltaTValue() << endl;
}

View File

@ -86,7 +86,7 @@ public:
virtual volScalarField& he()
{
NotImplemented;
return volScalarField::null().constCast();
return const_cast<volScalarField&>(volScalarField::null());
}
//- Return access to the internal energy field [J/Kg]

View File

@ -33,12 +33,7 @@ Description
\*---------------------------------------------------------------------------*/
{
const DimensionedField<scalar, volMesh> contErr
(
interpolatedCells.internalField()
*cellMask.internalField()
*fvc::div(phi)().internalField()
);
volScalarField contErr(interpolatedCells*cellMask*fvc::div(phi));
scalar sumLocalContErr = runTime.deltaTValue()*
mag(contErr)().weightedAverage(mesh.V()).value();

View File

@ -65,7 +65,7 @@
dimensionedScalar rAUf("rAUf", dimTime/rho.dimensions(), 1.0);
const cellCellStencilObject& overlap = Stencil::New(mesh);
const labelUList& cellTypes = overlap.cellTypes();
const labelList& cellTypes = overlap.cellTypes();
const labelIOList& zoneIDs = overlap.zoneID();
while (pimple.correctNonOrthogonal())

View File

@ -232,7 +232,7 @@
surfaceScalarField mSfGradp("mSfGradp", pEqnIncomp.flux()/rAUf);
phasei = 0;
phi = Zero;
phi = dimensionedScalar("phi", phi.dimensions(), Zero);
for (phaseModel& phase : fluid.phases())
{
@ -261,7 +261,7 @@
mSfGradp = pEqnIncomp.flux()/rAUf;
U = Zero;
U = dimensionedVector("U", dimVelocity, Zero);
phasei = 0;
for (phaseModel& phase : fluid.phases())

View File

@ -626,7 +626,7 @@ void Foam::multiphaseMixture::solveAlphas
MULES::limitSum(alphaPhiCorrs);
rhoPhi_ = Zero;
rhoPhi_ = dimensionedScalar(dimMass/dimTime, Zero);
volScalarField sumAlpha
(

View File

@ -12,11 +12,8 @@ for (int Ecorr=0; Ecorr<nEnergyCorrectors; Ecorr++)
phaseModel& phase = fluid.anisothermalPhases()[anisothermalPhasei];
const volScalarField& alpha = phase;
const tmp<volScalarField> trho = phase.rho();
const tmp<volVectorField> tU = phase.U();
const auto& rho = trho();
const auto& U = tU();
const volScalarField& rho = phase.rho();
const volVectorField& U = phase.U();
fvScalarMatrix EEqn
(

View File

@ -11,9 +11,7 @@
UPtrList<volScalarField>& Y = phase.YActiveRef();
const volScalarField& alpha = phase;
const tmp<volScalarField> trho = phase.rho();
const auto& rho = trho();
const volScalarField& rho = phase.rho();
forAll(Y, i)
{

View File

@ -14,11 +14,9 @@ PtrList<fvVectorMatrix> UEqns(phases.size());
phaseModel& phase = fluid.movingPhases()[movingPhasei];
const volScalarField& alpha = phase;
const tmp<volScalarField> trho = phase.rho();
const volScalarField& rho = phase.rho();
volVectorField& U = phase.URef();
const auto& rho = trho();
UEqns.set
(
phase.index(),

View File

@ -17,11 +17,9 @@ PtrList<fvVectorMatrix> UEqns(phases.size());
phaseModel& phase = fluid.movingPhases()[movingPhasei];
const volScalarField& alpha = phase;
const tmp<volScalarField> trho = phase.rho();
const volScalarField& rho = phase.rho();
volVectorField& U = phase.URef();
const auto& rho = trho();
UEqns.set
(
phase.index(),

View File

@ -38,9 +38,7 @@
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< "Flow time scale min/max = "
<< limits.min() << ", " << limits.max() << endl;
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
}

View File

@ -8,5 +8,5 @@
Info<< "Max Ur Courant Number = " << UrCoNum << endl;
CoNum = Foam::max(CoNum, UrCoNum);
CoNum = max(CoNum, UrCoNum);
}

View File

@ -6,13 +6,11 @@ const volScalarField& alpha2 = phase2;
volVectorField& U1 = phase1.URef();
surfaceScalarField& phi1 = phase1.phiRef();
const tmp<surfaceScalarField> talphaPhi1 = phase1.alphaPhi();
const auto& alphaPhi1 = talphaPhi1();
const surfaceScalarField& alphaPhi1 = phase1.alphaPhi();
volVectorField& U2 = phase2.URef();
surfaceScalarField& phi2 = phase2.phiRef();
const tmp<surfaceScalarField> talphaPhi2 = phase2.alphaPhi();
const auto& alphaPhi2 = talphaPhi2();
const surfaceScalarField& alphaPhi2 = phase2.alphaPhi();
surfaceScalarField& phi = fluid.phi();

View File

@ -31,9 +31,7 @@
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
auto limits = gMinMax(rDeltaT.primitiveField());
limits.reset(1/(limits.max()+VSMALL), 1/(limits.min()+VSMALL));
Info<< "Flow time scale min/max = "
<< limits.min() << ", " << limits.max() << endl;
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
}

View File

@ -8,5 +8,5 @@
Info<< "Max Ur Courant Number = " << UrCoNum << endl;
CoNum = Foam::max(CoNum, UrCoNum);
CoNum = max(CoNum, UrCoNum);
}

View File

@ -50,7 +50,7 @@
+ (
he2.name() == thermo2.phasePropertyName("e")
? fvc::div(fvc::absolute(alphaPhi2, alpha2, U2), p)
+ p*fvc::ddt(alpha2)
+ p*fvc::ddt(alpha1)
: -alpha2*dpdt
)

View File

@ -14,6 +14,6 @@ if (!(runTime.timeIndex() % 5))
if (smi < -SMALL)
{
Info<< "Resetting Dcorr to 0" << endl;
Dcorr == Zero;
Dcorr == dimensionedVector(Dcorr.dimensions(), Zero);
}
}

View File

@ -1,6 +1,6 @@
#!/bin/sh
cd "${0%/*}" || exit # Run from this directory
. "${WM_PROJECT_DIR:?}"/wmake/scripts/wmakeFunctions # Need wmake functions
cd "${0%/*}" || exit # Run from this directory
. ${WM_PROJECT_DIR:?}/wmake/scripts/wmakeFunctions # Require wmake functions
#------------------------------------------------------------------------------

View File

@ -1,9 +1,7 @@
#!/bin/sh
cd "${0%/*}" || exit # Run from this directory
set -- -all="${0##*/}" "$@" # Execute this instead of ./Allwmake
. "${WM_PROJECT_DIR:?}"/wmake/scripts/AllwmakeParseArguments
. "${WM_PROJECT_DIR:?}"/wmake/scripts/wmakeFunctions # Need wmake functions
cd "${0%/*}" || exit # Run from this directory
. ${WM_PROJECT_DIR:?}/wmake/scripts/AllwmakeParseArguments -no-recursion "$@"
. ${WM_PROJECT_DIR:?}/wmake/scripts/wmakeFunctions # Require wmake functions
#------------------------------------------------------------------------------
# Environment

View File

@ -5,7 +5,7 @@
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2018-2025 OpenCFD Ltd.
Copyright (C) 2018-2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -25,12 +25,9 @@ License
Description
Test the sizeof for basic types.
Also tests how the data mapping of OpenFOAM types to UPstream (MPI)
type ids are handled.
Can be compiled and run without any OpenFOAM libraries.
g++ -std=c++17 -oTest-machine-sizes Test-machine-sizes.cpp
g++ -std=c++11 -oTest-machine-sizes Test-machine-sizes.cpp
\*---------------------------------------------------------------------------*/
@ -40,134 +37,6 @@ Description
#include <iostream>
#include <limits>
#include <typeinfo>
#include <type_traits>
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Partial copy from UPstream.H
//- Some MPI data types
//
//- Mapping of some fundamental and aggregate types to MPI data types
enum class dataTypes : int
{
// Fundamental Types [10]:
Basic_begin,
type_byte = Basic_begin,
type_int16,
type_int32,
type_int64,
type_uint16,
type_uint32,
type_uint64,
type_float,
type_double,
type_long_double,
invalid,
Basic_end = invalid
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Partial copy from UPstreamTraits.H
//- UPstream data type corresponding to an intrinsic (MPI) type
template<class T>
struct UPstream_mpi_dataType : std::false_type
{
static constexpr auto datatype_id = dataTypes::invalid;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Specializations to match elements of UPstream::dataTypes
#undef defineUPstreamDataTraits
#define defineUPstreamDataTraits(TypeId, Type) \
template<> struct UPstream_mpi_dataType<Type> : std::true_type \
{ \
static constexpr auto datatype_id = dataTypes::TypeId; \
};
defineUPstreamDataTraits(type_byte, char);
defineUPstreamDataTraits(type_byte, unsigned char);
defineUPstreamDataTraits(type_int16, int16_t);
defineUPstreamDataTraits(type_int32, int32_t);
defineUPstreamDataTraits(type_int64, int64_t);
defineUPstreamDataTraits(type_uint16, uint16_t);
defineUPstreamDataTraits(type_uint32, uint32_t);
defineUPstreamDataTraits(type_uint64, uint64_t);
defineUPstreamDataTraits(type_float, float);
defineUPstreamDataTraits(type_double, double);
defineUPstreamDataTraits(type_long_double, long double);
#undef defineUPstreamDataTraits
//- Explicit handling of data type aliases. This is necessary since
//- different systems map things like 'unsigned long' differently but we
//- restrict ourselves to int32/int64 types
template<class T>
struct UPstream_alias_dataType
:
std::bool_constant
<
// Basic MPI type
UPstream_mpi_dataType<std::remove_cv_t<T>>::value ||
(
// Or some int 32/64 type to re-map
std::is_integral_v<T>
&& (sizeof(T) == sizeof(int32_t) || sizeof(T) == sizeof(int64_t))
)
>
{
using base = std::conditional_t
<
UPstream_mpi_dataType<std::remove_cv_t<T>>::value,
std::remove_cv_t<T>, // <- using mpi type (no alias)
std::conditional_t // <- using alias
<
(
std::is_integral_v<T>
&& (sizeof(T) == sizeof(int32_t) || sizeof(T) == sizeof(int64_t))
),
std::conditional_t
<
(sizeof(T) == sizeof(int32_t)),
std::conditional_t<std::is_signed_v<T>, int32_t, uint32_t>,
std::conditional_t<std::is_signed_v<T>, int64_t, uint64_t>
>,
char // Fallback is a byte (eg, arbitrary contiguous data)
>
>;
static constexpr auto datatype_id =
UPstream_mpi_dataType<base>::datatype_id;
};
// Handle int8_t/uint8_t as aliases since 'signed char' etc may be
// ambiguous
//- Map \c int8_t to UPstream::dataTypes::type_byte
template<>
struct UPstream_alias_dataType<int8_t> : std::true_type
{
using base = char;
static constexpr auto datatype_id = dataTypes::type_byte;
};
//- Map \c uint8_t to UPstream::dataTypes::type_byte
template<>
struct UPstream_alias_dataType<uint8_t> : std::true_type
{
using base = unsigned char;
static constexpr auto datatype_id = dataTypes::type_byte;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
template<class T>
void print(const char* name, bool showLimits = true)
@ -178,84 +47,28 @@ void print(const char* name, bool showLimits = true)
if (showLimits)
{
std::cout
<< " max=<";
if constexpr (sizeof(T) == 1)
{
std::cout << int(std::numeric_limits<T>::max());
}
else
{
std::cout << std::numeric_limits<T>::max();
}
std::cout << '>';
}
// A declared or deduced MPI type, or aliased
if constexpr (UPstream_mpi_dataType<T>::value)
{
std::cout
<< " is_mpi=("
<< int(UPstream_mpi_dataType<T>::datatype_id) << ')';
}
else
{
std::cout << " is_mpi=(null)";
}
// Any aliases?
if constexpr (UPstream_alias_dataType<T>::value)
{
if constexpr (UPstream_mpi_dataType<T>::value)
{
std::cout << " alias=base";
}
else
{
std::cout
<< " alias=("
<< int(UPstream_alias_dataType<T>::datatype_id) << ')';
}
<< " \"max\"=" << std::numeric_limits<T>::max();
}
std::cout<< '\n';
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Main program:
int main(int argc, char *argv[])
{
std::cout<< "c++ = " << __cplusplus << '\n';
std::cout<< "machine sizes (and some MPI traits)\n---\n\n";
std::cout<< "machine sizes\n---\n\n";
print<int8_t>("int8_t");
print<uint8_t>("uint8_t");
print<int16_t>("int16_t");
print<uint16_t>("uint16_t");
print<int32_t>("int32_t");
print<uint32_t>("uint32_t");
print<int64_t>("int64_t");
print<uint64_t>("uint64_t");
std::cout << '\n';
print<char>("char");
print<signed char>("signed char");
print<unsigned char>("unsigned char");
print<short>("short");
print<int>("int");
print<unsigned>("unsigned");
print<long>("long");
print<unsigned long>("unsigned long");
print<std::size_t>("std::size_t");
print<long long>("long long");
std::cout << '\n';
print<std::size_t>("std::size_t");
print<std::streamsize>("std::streamsize");
std::cout << '\n';
print<float>("float");
print<double>("double");
print<long double>("long double");

View File

@ -1,3 +1,3 @@
Test-CircularBuffer.cxx
Test-CircularBuffer.C
EXE = $(FOAM_USER_APPBIN)/Test-CircularBuffer

View File

@ -1,3 +1,3 @@
Test-CompactIOList.cxx
Test-CompactIOList.C
EXE = $(FOAM_USER_APPBIN)/Test-CompactIOList

View File

@ -6,7 +6,7 @@
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2020-2025 OpenCFD Ltd.
Copyright (C) 2020-2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -25,7 +25,7 @@ License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
Test-CompactIOList
testCompactIOList
Description
Simple demonstration and test application for the CompactIOList container
@ -46,20 +46,13 @@ using namespace Foam;
int main(int argc, char *argv[])
{
argList::addBoolOption("ascii", "use ascii format");
argList::addOption("count", "number of faces");
#include "setRootCase.H"
#include "createTime.H"
IOstreamOption streamOpt(IOstreamOption::BINARY);
// IOstreamOption streamOpt(IOstreamOption::ASCII);
if (args.found("ascii"))
{
streamOpt.format(IOstreamOption::ASCII);
}
const label size = args.getOrDefault<label>("count", 20000000);
const label size = 20000000;
// Old format
// ~~~~~~~~~~
@ -70,50 +63,39 @@ int main(int argc, char *argv[])
(
IOobject
(
"faces2-plain",
"faces2",
runTime.constant(),
polyMesh::meshSubDir,
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE,
IOobject::NO_REGISTER
)
),
size
);
faces2.resize(size, face(identity(4)));
const face f(identity(4));
Info<< "Plain format faceList " << faces2.objectRelPath() << nl;
Info<< " constructed in = " << runTime.cpuTimeIncrement()
<< " s" << endl;
forAll(faces2, i)
{
faces2[i] = f;
}
Info<< "Constructed faceList in = "
<< runTime.cpuTimeIncrement() << " s" << nl << endl;
faces2.writeObject(streamOpt, true);
Info<< " wrote in = "
<< runTime.cpuTimeIncrement() << " s" << endl;
// Read (size only)
label count = faceIOList::readContentsSize
(
IOobject
(
"faces2-plain",
runTime.constant(),
polyMesh::meshSubDir,
runTime,
IOobject::MUST_READ
)
);
Info<< " counted " << count << " faces on disk in = "
<< runTime.cpuTimeIncrement() << " s" << endl;
Info<< "Written old format faceList in = "
<< runTime.cpuTimeIncrement() << " s" << nl << endl;
// Read
faceIOList faces2b
faceIOList faces3
(
IOobject
(
"faces2-plain",
"faces2",
runTime.constant(),
polyMesh::meshSubDir,
runTime,
@ -123,7 +105,7 @@ int main(int argc, char *argv[])
)
);
Info<< " read " << faces2b.size() << " faces in = "
Info<< "Read old format " << faces3.size() << " faceList in = "
<< runTime.cpuTimeIncrement() << " s" << nl << endl;
}
@ -132,54 +114,44 @@ int main(int argc, char *argv[])
// ~~~~~~~~~~
{
// Construct big faceList in compact format
// Construct big faceList in new format
faceCompactIOList faces2
(
IOobject
(
"faces2-compact",
"faces2",
runTime.constant(),
polyMesh::meshSubDir,
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE,
IOobject::NO_REGISTER
)
),
size
);
faces2.resize(size, face(identity(4)));
const face f(identity(4));
Info<< "Compact format faceList" << faces2.objectRelPath() << nl;
Info<< " constructed in = "
<< runTime.cpuTimeIncrement() << " s" << endl;
forAll(faces2, i)
{
faces2[i] = f;
}
Info<< "Constructed new format faceList in = "
<< runTime.cpuTimeIncrement() << " s" << nl << endl;
faces2.writeObject(streamOpt, true);
Info<< " wrote in = "
<< runTime.cpuTimeIncrement() << " s" << endl;
// Read (size only)
label count = faceCompactIOList::readContentsSize
(
IOobject
(
"faces2-compact",
runTime.constant(),
polyMesh::meshSubDir,
runTime,
IOobject::MUST_READ
)
);
Info<< " counted " << count << " faces on disk in = "
<< runTime.cpuTimeIncrement() << " s" << endl;
Info<< "Written new format faceList in = "
<< runTime.cpuTimeIncrement() << " s" << nl << endl;
// Read
faceCompactIOList faces2b
faceCompactIOList faces3
(
IOobject
(
"faces2-compact",
"faces2",
runTime.constant(),
polyMesh::meshSubDir,
runTime,
@ -189,7 +161,7 @@ int main(int argc, char *argv[])
)
);
Info<< " read " << faces2b.size() << " faces in = "
Info<< "Read new format " << faces3.size() << " faceList in = "
<< runTime.cpuTimeIncrement() << " s" << nl << endl;
}

View File

@ -5,7 +5,7 @@
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2020-2025 OpenCFD Ltd.
Copyright (C) 2020-2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
@ -38,11 +38,12 @@ Description
\*---------------------------------------------------------------------------*/
#include "complex.H"
#include "Tensor.H"
#include "SymmTensor.H"
#include "SphericalTensor.H"
#include "DiagTensor.H"
#include "scalar.H"
#include "complex.H"
using namespace Foam;
@ -56,11 +57,45 @@ unsigned nTest_ = 0;
unsigned nFail_ = 0;
// Compare two floating point types, and print output.
// Do ++nFail_ if values of two objects are not equal within a given tolerance.
// The function is converted from PEP-485.
template<class Type>
typename std::enable_if<pTraits<Type>::rank == 0, void>::type
cmp
(
const word& msg,
const Type& x,
const Type& y,
const scalar relTol = 1e-8, //<! are values the same within 8 decimals
const scalar absTol = 0 //<! useful for cmps near zero
)
{
Info<< msg << x << endl;
unsigned nFail = 0;
if (max(absTol, relTol*max(mag(x), mag(y))) < mag(x - y))
{
++nFail;
}
if (nFail)
{
Info<< nl
<< " #### Fail in " << nFail << " comps ####" << nl << endl;
++nFail_;
}
++nTest_;
}
// Compare two containers elementwise, and print output.
// Do ++nFail_ if two components are not equal within a given tolerance.
// The function is converted from PEP-485
template<class Type>
void cmp
typename std::enable_if<pTraits<Type>::rank != 0, void>::type
cmp
(
const word& msg,
const Type& x,
@ -69,37 +104,18 @@ void cmp
const scalar absTol = 0
)
{
const auto notEqual = [=](const auto& a, const auto& b) -> bool
{
return
(
Foam::max(absTol, relTol*Foam::max(Foam::mag(a), Foam::mag(b)))
< Foam::mag(a - b)
);
};
Info<< msg << x << endl;
unsigned nFail = 0;
if constexpr (is_vectorspace_v<Type>)
for (direction i = 0; i < pTraits<Type>::nComponents; ++i)
{
for (direction i = 0; i < pTraits<Type>::nComponents; ++i)
{
if (notEqual(x[i], y[i]))
{
++nFail;
}
}
}
else
{
if (notEqual(x, y))
if (max(absTol, relTol*max(mag(x[i]), mag(y[i]))) < mag(x[i] - y[i]))
{
++nFail;
}
}
Info<< msg << x << endl;
if (nFail)
{
Info<< nl
@ -352,26 +368,27 @@ void test_global_opers(Type)
// Do compile-time recursion over the given types
template<std::size_t I = 0, typename... Tp>
void run_tests(const std::tuple<Tp...>& types, const List<word>& names)
inline typename std::enable_if<I == sizeof...(Tp), void>::type
run_tests(const std::tuple<Tp...>& types, const List<word>& typeID){}
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I < sizeof...(Tp), void>::type
run_tests(const std::tuple<Tp...>& types, const List<word>& typeID)
{
if constexpr (I < sizeof...(Tp))
{
const auto& name = names[I];
Info<< nl << " ## Test constructors: "<< typeID[I] <<" ##" << nl;
test_constructors(std::get<I>(types));
Info<< nl << " ## Test constructors: " << name << " ##" << nl;
test_constructors(std::get<I>(types));
Info<< nl << " ## Test member functions: "<< typeID[I] <<" ##" << nl;
test_member_funcs(std::get<I>(types));
Info<< nl << " ## Test member functions: " << name << " ##" << nl;
test_member_funcs(std::get<I>(types));
Info<< nl << " ## Test global functions: "<< typeID[I] << " ##" << nl;
test_global_funcs(std::get<I>(types));
Info<< nl << " ## Test global functions: " << name << " ##" << nl;
test_global_funcs(std::get<I>(types));
Info<< nl << " ## Test global operators: "<< typeID[I] <<" ##" << nl;
test_global_opers(std::get<I>(types));
Info<< nl << " ## Test global operators: " << name << " ##" << nl;
test_global_opers(std::get<I>(types));
run_tests<I + 1, Tp...>(types, names);
}
run_tests<I + 1, Tp...>(types, typeID);
}
@ -386,8 +403,8 @@ int main()
const List<word> typeID
({
"DiagTensor<float>",
"DiagTensor<double>",
"DiagTensor<floatScalar>",
"DiagTensor<doubleScalar>",
"DiagTensor<complex>"
});

View File

@ -0,0 +1,3 @@
Test-Dictionary.C
EXE = $(FOAM_USER_APPBIN)/Test-Dictionary

Some files were not shown because too many files have changed in this diff Show More