The "Refresh Times" button now triggers a re-render of the visualisation
as well as scanning for new times and fields. This prevents old
overwritten data from remaining on screen despite everything else having
been updated.
ParaView has been updated to version 5.4.0. The C++ panel has been
deleted and replaced with a panel based on the new(er) XML API. This
reader works for ParaView-4.0.1 and newer. The ParaView 3 reader remains
unchanged.
Update issues have also been fixed. All the time directories are now
scanned for fields and clouds when filling the selection lists. This
stops fields from disappearing when the time is changed. The scan is
only done on startup and when the refresh button is pressed.
The list of available Lagrangian fields also now shows a combined set of
all the clouds. Previously, only fields from the first cloud were shown.
If a field does not apply to all the clouds, ParaView will display it's
name in the dropdown menu with a "(partial)" qualifier.
Some undocumented and incomplete bits of code, which were not being
compiled, have been removed.
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor. Processor directories are named 'processorN',
where N is the processor number.
This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor. The files are stored in a single
directory named 'processors'.
The new format produces significantly fewer files - one per field, instead of N
per field. For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.
The file writing can be threaded allowing the simulation to continue running
while the data is being written to file. NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".
The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:
OptimisationSwitches
{
...
//- Parallel IO file handler
// uncollated (default), collated or masterUncollated
fileHandler uncollated;
//- collated: thread buffer size for queued file writes.
// If set to 0 or not sufficient for the file size threading is not used.
// Default: 2e9
maxThreadFileBufferSize 2e9;
//- masterUncollated: non-blocking buffer size.
// If the file exceeds this buffer size scheduled transfer is used.
// Default: 2e9
maxMasterFileBufferSize 2e9;
}
When using the collated file handling, memory is allocated for the data in the
thread. maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated. If the data exceeds this size, the write does not use threading.
When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer. If the
data exceeds this size, the system uses scheduled communication.
The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters. Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.
A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated
An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling
The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
Updated the tetrahedron and triangle classes to use the barycentric
primitives. Removed duplicate code for generating random positions in
tets and tris, and fixed bug in tri random position.
Fixed reaction source terms in the energy and species fraction equations
by multiplying by the phase fraction.
Resolves bug report https://bugs.openfoam.org/view.php?id=2591
for consistency with reactingTwoPhaseEulerFoam and to ensure correct operation
of models requiring formal boundedness of phase-fractions.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2589
"pos" now returns 1 if the argument is greater than 0, otherwise it returns 0.
This is consistent with the common mathematical definition of the "pos" function:
https://en.wikipedia.org/wiki/Sign_(mathematics)
However the previous implementation in which 1 was also returned for a 0
argument is useful in many situations so the "pos0" has been added which returns
1 if the argument is greater or equal to 0. Additionally the "neg0" has been
added which returns 1 if if the argument is less than or equal to 0.
Provides better context for the available boundary conditions, fvOptions,
functionObjects etc. and thus returns only those available to and compatible
with the particular application.
e.g.
pimpleFoam -help
Usage: pimpleFoam [OPTIONS]
options:
-case <dir> specify alternate case directory, default is the cwd
-listFunctionObjects
List functionObjects
-listFvOptions List fvOptions
-listRegisteredSwitches
List switches registered for run-time modification
-listScalarBCs List scalar field boundary conditions (fvPatchField<scalar>)
-listSwitches List switches declared in libraries but not set in
etc/controlDict
-listTurbulenceModels
List turbulenceModels
-listUnsetSwitches
List switches declared in libraries but not set in
etc/controlDict
-listVectorBCs List vector field boundary conditions (fvPatchField<vector>)
-noFunctionObjects
do not execute functionObjects
-parallel run in parallel
-postProcess Execute functionObjects only
-roots <(dir1 .. dirN)>
slave root directories for distributed running
-srcDoc display source code in browser
-doc display application documentation in browser
-help print the usage
pimpleFoam listTurbulenceModels
pimpleFoam -listTurbulenceModels
/*---------------------------------------------------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: dev |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
Build : dev-39c46019e44f
Exec : pimpleFoam -listTurbulenceModels
Date : Jun 10 2017
Time : 21:37:49
Host : "dm"
PID : 675
Case : /home/dm2/henry/OpenFOAM/OpenFOAM-dev
nProcs : 1
sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).
SetNaN : Initialising allocated memory to NaN (FOAM_SETNAN).
fileModificationChecking : Monitoring run-time modified files using timeStampMaster (fileModificationSkew 10)
allowSystemOperations : Allowing user-supplied system call operations
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Turbulence models
3
(
LES
RAS
laminar
)
RAS models
18
(
LRR
LamBremhorstKE
LaunderSharmaKE
LienCubicKE
LienLeschziner
RNGkEpsilon
SSG
ShihQuadraticKE
SpalartAllmaras
kEpsilon
kOmega
kOmegaSST
kOmegaSSTLM
kOmegaSSTSAS
kkLOmega
qZeta
realizableKE
v2f
)
LES models
10
(
DeardorffDiffStress
Smagorinsky
SpalartAllmarasDDES
SpalartAllmarasDES
SpalartAllmarasIDDES
WALE
dynamicKEqn
dynamicLagrangian
kEqn
kOmegaSSTDES
)
Further work will be needed to support the -listTurbulenceModels option in
multiphase solvers.
This addition allows for theoretical wave models to be utilised for
initialisation and as boundary conditions. Multiple models can be used
simultaneously, each with differing phases and orientations. If multiple
models are used the shapes and velocities are superimposed.
The wave models are specified in the velocity boundary condition. The
phase fraction boundary condition and the set utility both look up the
velocity condition in order to access the wave model. A velocity
boundary may be specified as follows:
inlet
{
type waveVelocity;
origin (0 0 0);
direction (1 0 0);
speed 2;
waves
(
Airy
{
length 300;
amplitude 2.5;
depth 150;
phase 0;
angle 0;
}
);
scale table ((1200 1) (1800 0));
crossScale constant 1;
}
The alpha boundary only requires the type, unless the name of the
velocity field is non-standard, in which case a "U" entry will also be
needed. The setWaves utility does not require a dictionary file; non-
standard field names can be specified as command-line arguments.
Wave models currently available are Airy (1st order) and Stokes2 (second
order). If a depth is specified, and it is not too large, then shallow
terms will be included, otherwise the models assume that the liquid is
deep.
This work was supported by Jan Kaufmann and Jan Oberhagemann at DNV GL.
now possible with level-sets as well as planes. Removed tetPoints class
as this wasn't really used anywhere except for the old tet-cutting
routines. Restored tetPointRef.H to be consistent with other primitive
shapes. Re-wrote tet-overlap mapping in terms of the new cutting.
See tutorials/compressible/rhoPimpleFoam/RAS/squareBendLiq for exapmle
pimpleControl: Added SIMPLErho option for running in SIMPLE mode
with large time-step/Courant number and relaxation. With this option the
density is updated from thermodynamics rather than continuity after the pressure
equation which is better behaved if pressure is relaxed and/or solved to a
loose relative tolerance. The need for this option is demonstrated in the
tutorials/compressible/rhoPimpleFoam/RAS/angledDuct tutorial which is unstable
without the option.