A new "-empty" option launches ParaView without opening any files. This enables users
to run ParaView using the paraFoam script for all data (OpenFOAM or otherwise), making
use of the automatic launching with Mesa if system OpenGL fails.
To view OpenFOAM case files, run "paraFoam".
To view other data files, run "paraFoam -empty" and open the files within ParaView.
To switch-off radiation set
radiationModel none;
in radiationProperties which instantiates "null" model that does not read any
data or coefficients or evaluate any fields.
Uses sample configuration files in $FOAM_ETC/caseDicts, including
utility configuration files and packaged function objects. For
example:
foamGet decomposeParDict
foamGet extrudeMeshDict
foamGet createPatchDict
foamGet surfaces
Files are copied into the system directory by default, otherwise a
different target directory can be specified with -target|-t option.
Chris Greenshields, CFD Direct
The subject can relate to models (including boundary conditions and
packaged function objects), applications and scripts. For example:
foamInfo simpleFoam
foamInfo kEpsilon
foamInfo turbulentIntensityKineticEnergyInlet
foamInfo fixedTemperatureConstraint
foamInfo surfaces
foamInfo foamNewBC
The output includes the following:
- File: the location of the relevant source code header file;
- Description details from the header file;
- Usage details from the header file;
- Examples: a list of relevant cases from the tutorials directory.
foamInfo includes the -web|-w and -browser|-b options to open relevant
HTML source code documentation at https://cpp.openfoam.org
Chris Greenshields, CFD Direct
This method waits until all the threads have completed IO operations and
then clears any cached information about the files on disk. This
replaces the deactivation of threading by means of zeroing the buffer
size when writing and reading of a file happen in sequence. It also
allows paraFoam to update the list of available times.
Patch contributed by Mattijs Janssens
Resolves bug report https://bugs.openfoam.org/view.php?id=2962
Mesh motion solver simple linear expansion and contraction of a mesh
region defined by a motion axis and the extents of the motion.
Example:
\verbatim
dynamicFvMesh dynamicMotionSolverFvMesh;
motionSolver displacementLinearMotion;
axis (0 1 0);
xFixed 0.8;
xMoving 0;
displacement table
(
(0 0)
(4 0.7)
);
\endverbatim
This mesh is compressed between \c xFixed and \c xMoving in the direction
\c axis between time 0 and 4 with a maximum displacement of 0.7.
The mesh beyond \c xFixed is fixed and beyond \c xMoving moves with maximum
displacement.
The sampled sets have been renamed in a more explicit and consistent
manner, and two new ones have also been added. The available sets are as
follows:
arcUniform: Uniform samples along an arc. Replaces "circle", and
adds the ability to sample along only a part of the circle's
circumference. Example:
{
type arcUniform;
centre (0.95 0 0.25);
normal (1 0 0);
radial (0 0 0.25);
startAngle -1.57079633;
endAngle 0.52359878;
nPoints 200;
axis x;
}
boundaryPoints: Specified point samples associated with a subset of
the boundary. Replaces "patchCloud". Example:
{
type boundaryPoints;
patches (inlet1 inlet2);
points ((0 -0.05 0.05) (0 -0.05 0.1) (0 -0.05 0.15));
maxDistance 0.01;
axis x;
}
boundaryRandom: Random samples within a subset of the boundary.
Replaces "patchSeed", but changes the behaviour to be entirely
random. It does not seed the boundary face centres first. Example:
{
type boundaryRandom;
patches (inlet1 inlet2);
nPoints 1000;
axis x;
}
boxUniform: Uniform grid of samples within a axis-aligned box.
Replaces "array". Example:
{
type boxUniform;
box (0.95 0 0.25) (1.2 0.25 0.5);
nPoints (2 4 6);
axis x;
}
circleRandom: Random samples within a circle. New. Example:
{
type circleRandom;
centre (0.95 0 0.25);
normal (1 0 0);
radius 0.25;
nPoints 200;
axis x;
}
lineFace: Face-intersections along a line. Replaces "face". Example:
{
type lineFace;
start (0.6 0.6 0.5);
end (0.6 -0.3 -0.1);
axis x;
}
lineCell: Cell-samples along a line at the mid-points in-between
face-intersections. Replaces "midPoint". Example:
{
type lineCell;
start (0.5 0.6 0.5);
end (0.5 -0.3 -0.1);
axis x;
}
lineCellFace: Combination of "lineFace" and "lineCell". Replaces
"midPointAndFace". Example:
{
type lineCellFace;
start (0.55 0.6 0.5);
end (0.55 -0.3 -0.1);
axis x;
}
lineUniform: Uniform samples along a line. Replaces "uniform".
Example:
{
type lineUniform;
start (0.65 0.3 0.3);
end (0.65 -0.3 -0.1);
nPoints 200;
axis x;
}
points: Specified points. Replaces "cloud" when the ordered flag is
false, and "polyLine" when the ordered flag is true. Example:
{
type points;
points ((0 -0.05 0.05) (0 -0.05 0.1) (0 -0.05 0.15));
ordered yes;
axis x;
}
sphereRandom: Random samples within a sphere. New. Example:
{
type sphereRandom;
centre (0.95 0 0.25);
radius 0.25;
nPoints 200;
axis x;
}
triSurfaceMesh: Samples from all the points of a triSurfaceMesh.
Replaces "triSurfaceMeshPointSet". Example:
{
type triSurfaceMesh;
surface "surface.stl";
axis x;
}
The headers have also had documentation added. Example usage and a
description of the control parameters now exists for all sets.
In addition, a number of the algorithms which generate the sets have
been refactored or rewritten. This was done either to take advantage of
the recent changes to random number generation, or to remove ad-hoc
fixes that were made unnecessary by the barycentric tracking algorithm.
The functions shared by pre-commit and pre-receive hooks have been
consolidated into bin/tools/HookFunctions in order to reduce
duplication. The #ifndef/#define and copyright checks have also been
fixed to operate on the staged changes, not the saved file.
The access of the surface tension coefficient has been changed in some
places so that an error is generated rather than returning a default
value of zero. The reciprocal of the surface tension coefficient is
frequently used in sub-models, so returning zero can generate a floating
point exception. A "surface tension model does not exist" warning is
preferable in these cases.
Patch to populationBalanceModel.C contributed by Institute of Fluid
Dynamics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
including third-body and pressure dependent derivatives, and derivative of the
temperature term. The complete Jacobian is more robust than the incomplete and
partially approximate form used previously and improves the efficiency of the
stiff ODE solvers which rely on the Jacobian.
Reaction rate evaluation moved from the chemistryModel to specie library to
simplfy support for alternative reaction rate expressions and associated
Jacobian terms.
Temperature clipping included in the Reaction class. This is inactive by default
but for most cases it is advised to provide temperature limits (high and
low). These are provided in the foamChemistryFile with the keywords Thigh and
Tlow. When using chemkinToFoam these values are set to the limits of the Janaf
thermodynamic data. With the new Jacobian this temperature clipping has proved
very beneficial for stability and for some cases essential.
Improvement of the TDAC MRU list better integrated in add and grow functions.
To get the most out of this significant development it is important to re-tune
the ODE integration tolerances, in particular the absTol in the odeCoeffs
sub-dictionary of the chemistryProperties dictionary:
odeCoeffs
{
solver seulex;
absTol 1e-12;
relTol 0.01;
}
Typically absTol can now be set to 1e-8 and relTol to 0.1 except for ignition
time problems, and with theses settings the integration is still robust but for
many cases a lot faster than previously.
Code development and integration undertaken by
Francesco Contino
Henry G. Weller, CFD Direct
twoPhaseMixtureThermo writes the temperatures during construction only
for them to be read again immediately after by construction of the
individual phases' thermo models. When running with collated file
handling this behaviour is not thread safe. This change deactivates
threading for the duration of this behaviour.
Patch contributed by Mattijs Janssens
The reference height is now defined in the direction of -g, whether as
previously it was defined in the direction cmptMag(g). This change makes
the behaviour consistent when the case is transformed. For a "typical"
case with g along one of the negative axes, this should make no
difference. None of the tutorials are affected.
Resolves bug report https://bugs.openfoam.org/view.php?id=2980
This is faster than the library functionality that it replaces, as it
allows the compiler to do inlining. It also does not utilise any static
state so generators do not interfere with each other. It is also faster
than the the array lookup in cachedRandom. The cachedRandom class
therefore offers no advantage over Random and has been removed.
Tree bound boxes are expanded asymmetrically to reduce the liklihood of
octree faces aliging with mesh faces and edges. The asymmetry is now
generated using hard-coded irrational numbers, rather than using a
random generator.
The asymmetry was effectively already hard coded. The random numbers are
only pseudo random, so the same numbers were being applied to the bound
boxes every time. This change simply removes the overhead of creating
the generator, and also gets rid of some duplicated code.
Sometimes decomposition can remove a cyclic patch entirely, converting
it into a processor cyclic. If this patch is being used to specify the
transform for a cyclicRepeatAMI patch then the calculation will fail.
This change adds a check for this situation, and errors with the
suggestion that the transform patch be preserved during decomposition.
The template is designed to work with the new foamSetupCHT utility.
It works simply for cases with a single fluid region (and multiple
solid regions); it can also be adapted for cases with multiple fluid
regions. For more information see the included README file.
runApplication isn't needed for foamDictionary as it doesn't log
anything of consequence. Using runApplication leads to false unconfirmed
completion warnings in the test loop as foamDictionary does not generate
an end statement.
The use of random numbers for positioning within the cone injection
models has been made consistent across all cores. Some calls have been
synchronised by means of the globalSample methods, whilst others have
been replaced by non-randomised algorithms.
This resolves bug report https://bugs.openfoam.org/view.php?id=2956
The functions findMin and findMax return the index of the minimum or
maximum component, consistently with the functions in ListOps.H. The
perpendicular function returns an arbitrary vector perpendicular to the
supplied vector, with the same magnitude.
The changeDictonary setup has been removed and replaced with a more
typical boundary condition setup. Dictionary variables and wildcards
have been used to reduce repetition of the simulation parameters.
The tutorial now also demonstrates how to run a multi-region CHT case
completely in parallel. If run-time post processing was being utilised
there would be no need for reconstruction at any point.
Changed the default region name from "domain" to "region" for consistency with
the rest of OpenFOAM.
Changed the multiple default region numbering to start from 1 rather than 0
because the top-level mesh in the case directory is always named "region0".
Changed the default region numbering to only relate to the default named regions
and does not increment for explicitly named regions. This avoids a naming
dependency on the default and named region order.
Added new option "-defaultRegionName <name>"
to specify the base name of the unspecified regions, defaults to "region"
Two single-cell test cases have been added for reactingTwoPhaseEulerFoam
with an interface composition phase system. These are droplet
evaporation cases; one single- and one multi-component. The cases run
for every possible inert specie, and check that the results between the
runs are broadly similar.
The multi-component case shows some unphysical changes at the start due
to non-convergence of the pimple iteration during the initial transient.
This can be mitigated by reducing the time-step.
The handling of species transfer within the interface-composition phase
change system has been sigificantly altered. The explicit-implicit
caching of the mass transfer has been removed and been replaced with
storage of an Su-Sp coefficient pair. The mass transfer is now generated
on the fly from these coefficients.
These fixes resolve a number of issues involving multiple species for
which the pimple loop did not converge to a conservative solution. It
also removes the requirement for a second evaluation of the mass
transfer after solution of the species fraction equations.
This work was supported by Zhen Li, at Evonik
This fixes a consistency issue in the interface-composition method, and
also seems to improve stability/convergence of the pimple iteration in
the presence of significant mass transfer.
MultiInteraction appeared to have been written for combining the usual
patch interaction models with a model called
CoincidentBaffleInteraction, which was never released. None of the
remaining patch interaction models make sense operating in combination,
so the MultiInteraction model has been removed. All documentation
references to CoincidentBaffleInteraction have also been deleted.
Resolves bug report https://bugs.openfoam.org/view.php?id=2939
This prevents infinite loops occurring during correction steps as a
result of a fixed correction velocity repeatedly pushing the particle
towards a rebound patch.
Resolves bug report https://bugs.openfoam.org/view.php?id=2935
This is equivalent to track to face, but it additionally crosses
internal faces at the end of the track to move into the next cell. This
is a common procedure when performing post-processing tracking
operations.
The new "rigid" joint permits no motion at all, "function" specifies the
position of the joint as a function of the position of it's parent, and
"functionDot" specifies the position of the joint as a function of the
velocity of it's parent. Note that the functions are applied uniformly
to each component of the parent joint's position/motion. Example
specifications are shown below.
joint
{
type rigid;
}
joint
{
type function;
function table ((-1 0) (0 1) (1 0));
}
joint
{
type functionDot;
function table ((-1 0) (0 1) (1 0));
}
This work was supported by Caitlin Worden Hodge, at Zyba
This allows for fixed joints or joints which completely constrain the
motion as a function of some other aspect of the model. The latter has
also been facilitaed by adding a reference to the rigid body model to
the base joint class.
Now lnInclude are created as required by the presence of entries in the EXE_INC
variable in the Make/options file. This removes the need for calling
wmakeLnInclude in various Allwmake files to ensure the existence of the
lnInclude directories prior to compilation of dependent libraries.
Requires the following changes to the corresponding entry in the fvOptions dictionary:
i. Use Tsol instead Tmelt as previously to define melting temperature in
isothermal phase change (for pure substance or eutectic mixture -> Tsol = Tliq);
ii. Optionally define new Tliq > Tsol to consider liquidus temperature in
non-isothermal phase change (for miscible mixture), where previous
defined Tsol defines solidus temperature;
iii. optionally define also alpha1e to consider max eutectic melt
fraction (that should be the percentage of solvent phase changed from
initial to eutectic liquid concentration) in partially isothermal (at
Tsol=Teutectic) and non-isothermal (from Tsol=Teutectic to Tliq) phase
change (for solid not miscible mixture) (alpha1e=0 -> pure substance;
alpha1e=1 -> eutectic mixture that is strictely not permitted).
Description
This source is designed to model the effect of solidification and melting
processes, e.g. windhield defrosting.
The isotherm phase change occurs at the melting temperature, \c Tsol (= \c
Tliq). The not isotherm phase change occurs between solidus and liquidus
temperature, \c Tsol < \c Tliq respectively, as long as the melt fraction is
greater than the max eutectic melt fraction, \c alpha1e (0 =
pure_substance, 1 = eutectic_mixture is not permitted) , i.e. eutectic to
initial solvent concentration difference, where a linear eutectic melt
fraction to temperature relation is considered - lever rule.
The presence of the solid phase in the flow field is incorporated into the
model as a momentum porosity contribution; the energy associated with the
phase change is added as an enthalpy contribution.
References:
\verbatim
Voller, V. R., & Prakash, C. (1987).
A fixed grid numerical modelling methodology for convection-diffusion
mushy region phase-change problems.
International Journal of Heat and Mass Transfer, 30(8), 1709-1719.
Swaminathan, C. R., & Voller, V. R. (1992).
A general enthalpy method for modeling solidification processes.
Metallurgical transactions B, 23(5), 651-664.
\endverbatim
The model generates the field \c \<name\>:alpha1 which can be visualised to
to show the melt distribution as a fraction [0-1].
Usage
Example usage:
\verbatim
solidificationMeltingSource1
{
type solidificationMeltingSource;
active yes;
selectionMode cellZone;
cellZone iceZone;
Tsol 273;
L 334000;
thermoMode thermo;
beta 50e-6;
rhoRef 800;
}
\endverbatim
Where:
\table
Property | Description | Required | Default value
Tsol | Solidus temperature [K] | yes |
Tliq | Liquidus temperature [K] | no | Tsol
alpha1e | Max eutectic melt fraction [0-1[ | no | 0
L | Latent heat of fusion [J/kg] | yes |
relax | Relaxation coefficient [0-1] | no | 0.9
thermoMode | Thermo mode [thermo|lookup] | yes |
rhoRef | Reference (solid) density [kg/m^3] | yes |
rho | Name of density field | no | rho
T | Name of temperature field | no | T
Cp | Name of specific heat field | no | Cp
U | Name of velocity field | no | U
phi | Name of flux field | no | phi
Cu | Model coefficient [1/s] | no | 100000
q | Model coefficient | no | 0.001
beta | Thermal expansion coefficient [1/K] | yes |
g | Accelerartion due to gravity | no |
\endtable
Patch contributed by Lorenzo Trevisan and integrated by CFD Direct.
Resolves patch request https://bugs.openfoam.org/view.php?id=2907
This change ensures only one include file is open at a time by storing the
included files on a dynamic list rather than scanning the tree and holding a
list of open buffers. This new approach is a bit faster and avoids the "too
many open files" error on machines with low limits on the number of file
descriptors allocated to users.
A new constraint patch has been added which permits AMI coupling in
cyclic geometries. The coupling is repeated with different multiples of
the cyclic transformation in order to achieve a full correspondence.
This allows, for example, a cylindrical AMI interface to be used in a
sector of a rotational geometry.
The patch is used in a similar manner to cyclicAMI, except that it has
an additional entry, "transformPatch". This entry must name a coupled
patch. The transformation used to repeat the AMI coupling is taken from
this patch. For example, in system/blockMeshDict:
boundary
(
cyclic1
{
type cyclic;
neighbourPatch cyclic2;
faces ( ... );
}
cyclic2
{
type cyclic;
neighbourPatch cyclic1;
faces ( ... );
}
cyclicRepeatAMI1
{
type cyclicRepeatAMI;
neighbourPatch cyclicRepeatAM2;
transformPatch cyclic1;
faces ( ... );
}
cyclicRepeatAMI2
{
type cyclicRepeatAMI;
neighbourPatch cyclicRepeatAMI1;
transformPatch cyclic1;
faces ( ... );
}
// other patches ...
);
In this example, the transformation between cyclic1 and cyclic2 is used
to define the repetition used by the two cyclicRepeatAMI patches.
Whether cyclic1 or cyclic2 is listed as the transform patch is not
important.
A tutorial, incompressible/pimpleFoam/RAS/impeller, has been added to
demonstrate the functionality. This contains two repeating AMI pairs;
one cylindrical and one planar.
A significant amount of maintenance has been carried out on the AMI and
ACMI patches as part of this work. The AMI methods now return
dimensionless weights by default, which prevents ambiguity over the
units of the weight field during construction. Large amounts of
duplicate code have also been removed by deriving ACMI classes from
their AMI equivalents. The reporting and writing of AMI weights has also
been unified.
This work was supported by Dr Victoria Suponitsky, at General Fusion
Solution controls now detect when convergence occurs at a write time and
avoid writing the final directory twice. This also resolves the issue
whereby a purgeWrite setting would remove an extra directory.
This resolves bug report https://bugs.openfoam.org/view.php?id=2904
Added a function object for the reacting Euler-Euler solvers which
evaluates and writes out the blended interfacial forces acting on a
given phase (drag, virtual mass, lift, wall lubrication and turbulent
dispersion).
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden - Rossendorf (HZDR)
The Sauter mean diameter calculation has been modified to be more stable
in the limit of vanishing phase fraction. The calculation of the overall
Sauter mean diameter for a populationBalance involving more than one
velocityGroup has been removed. This calculation depends upon the phase
fraction and it is not stable as the fractions tend to zero. The overall
Sauter mean diameter is only used for post-processing and can still be
recovered from the individual diameter fields of the involved
velocityGroups.
Some parts of the population balance modeling have also been renamed and
refactored.
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden - Rossendorf (HZDR)
Surfaces are specified as a list and the controls applied to each, e.g. in the
rhoPimpleFoam/RAS/annularThermalMixer tutorial:
surfaces
(
"AMI.obj"
"shaft.obj"
"wall.obj"
"statorBlades.obj"
"rotorBlades.obj"
);
includedAngle 150; // Identifes a feature when angle
// between faces < includedAngle
trimFeatures
{
minElem 10; // minimum edges within a feature
}
writeObj yes; // writes out _edgeMesh.obj files to view features
If different controls are required for different surfaces multiple
sub-dictionaries can be used:
AMIsurfaces
{
surfaces
(
"AMI.obj"
);
includedAngle 140; // Identifes a feature when angle
// between faces < includedAngle
trimFeatures
{
minElem 8; // minimum edges within a feature
}
writeObj yes; // writes out _edgeMesh.obj files to view features
}
otherSurfaces
{
surfaces
(
"shaft.obj"
"wall.obj"
"statorBlades.obj"
"rotorBlades.obj"
);
includedAngle 150; // Identifes a feature when angle
// between faces < includedAngle
trimFeatures
{
minElem 10; // minimum edges within a feature
}
writeObj yes; // writes out _edgeMesh.obj files to view features
}
Existing feature edge files corresponding to particular surfaces can be specified using
the "files" association list:
surfaces
(
"AMI.obj"
"shaft.obj"
"wall.obj"
"statorBlades.obj"
"rotorBlades.obj"
);
files
(
"AMI.obj" "constant/triSurface/AMI.obj.eMesh";
);
includedAngle 150; // Identifes a feature when angle
// between faces < includedAngle
trimFeatures
{
minElem 10; // minimum edges within a feature
}
writeObj yes; // writes out _edgeMesh.obj files to view features
An "inletOutlet" switch has been added to the wave velocity boundary
condition to allow the boundary to be fixed, as is possible for the
corresponding alpha condition.
A "heightAboveWave" option has been added to the wave superposition
class to calculate velocity based on the height above the wave, rather
than above the origin. This may improve initialisation but it may also
generate divergence in the initial velocity field.
The alpha condition has also been completed so that it applies a
modelled gradient when the flow points out and a wave pressure condition
is in use.
fvcAverage and fvcReconstruct both do divisions or inverses of surface
summed fields. A single-cell zero-dimension case, has no genuine faces
on which to sum, so surface sums are identically zero. This change
detects this situation and returns a zero value instead of failing due
to a divide by zero.
This allows the multiphase test cases to be reduced to just one cell.
to avoid the need for sed'ing the output. This improves performance by avoiding
the need for calling additional commands and generating a temporary file.
The calculations for mixture rho and U have been changed so that they
represent phase-averaged quantities over the moving phases only.
The mixture density is used as part of the pressure solution to
calculate buoyancy forces. The pressure within a stationary phase is
considered to be decoupled from the moving phases; i.e., it is
considered self-supporting. Therefore the stationary phase density
should not form a part of buoyancy calculations. This change to the
definition of mixture density ensures this.
Lookup of models associated with unordered phase pairs now searches for
both possible pair names; e.g. gasAndLiquid and liquidAndGas.
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden - Rossendorf (HZDR)
The nonRandomTwoLiquid and Roult interface composition models have been
instantiated (and updated so that they compile), and a fuller set of
multi-component liquids and multi-component and reacting gases have been
used.
The selection name of the saturated and nonRandomTwoLiquid models have
also been changed to remove the capitalisation from the first letter, as
is consistent with other sub-models that are not proper nouns.
Streamlines can now be tracked in both directions from the set of
initial locations. The keyword controlling this behaviour is
"direction", which can be set to "forward", "backward" or "both".
This new keyword superseeds the "trackForward" entry, which has been
retained for backwards compatibility.
For compatibility with all the mesh and related classes in OpenFOAM The 'normal'
function of the 'triangle', 'triFace' and 'face' classes now returns the unit
normal vector rather than the vector area which is now provided by the 'area'
function.
This model transfers a dispersed droplet phase to a film phase at a rate
relative to its intersection with a third phase. The third phase is
termed the "surface". It can be enabled in constant/phaseProperties as
follows:
phaseTransfer
(
(droplets and film)
{
type deposition;
droplet droplets;
surface solid;
efficiency 0.1;
}
);
The efficiency is an empirical factor which represents a reduction in
collisions as a result of droplets flowing around the surface phase and
not coalescing on impact.
This work was supported by Georg Skillas and Zhen Li, at Evonik
An additional layer has been added into the phase system hierarchy which
facilitates the application of phase transfer modelling. These are
models which exchange mass between phases without the thermal coupling
that would be required to represent phase change. They can be thought of
as representation changes; e.g., between two phases representing
different droplet sizes of the same physical fluid.
To facilitate this, the heat transfer phase systems have been modified
and renamed and now both support mass transfer. The two sided version
is only required for derivations which support phase change.
The following changes to case settings have been made:
- The simplest instantiated phase systems have been renamed to
basicTwoPhaseSystem and basicMultiphaseSystem. The
heatAndMomentumTransfer*System entries in constant/phaseProperties files
will need updating accordingly.
- A phaseTransfer sub-model entry will be required in the
constant/phaseProperties file. This can be an empty list.
- The massTransfer switch in thermal phase change cases has been renamed
phaseTransfer, so as not to be confused with the mass transfer models
used by interface composition cases.
This work was supported by Georg Skillas and Zhen Li, at Evonik
Description
This boundary condition extrapolates field to the patch using the near-cell
values and adjusts the distribution to match the specified, optionally
time-varying, mean value. This extrapolated field is applied as a
fixedValue for outflow faces but zeroGradient is applied to inflow faces.
This boundary condition can be applied to pressure when inletOutlet is
applied to the velocity so that a zeroGradient condition is applied to the
pressure at inflow faces where the velocity is specified to avoid an
unphysical over-specification of the set of boundary conditions.
Usage
\table
Property | Description | Required | Default value
meanValue | mean value Function1 | yes |
phi | Flux field name | no | phi
\endtable
Example of the boundary condition specification:
\verbatim
<patchName>
{
type fixedMeanOutletInlet;
meanValue 1.0;
}
\endverbatim
See also
Foam::fixedMeanFvPatchField
Foam::outletInletFvPatchField
Foam::Function1Types
The prghPressureFvPatchScalarField, prghTotalPressureFvPatchScalarField and
prghUniformDensityHydrostaticPressure p_rgh boundary conditions are now derived
from the corresponding pressure boundary conditions using the
PrghPressureFvPatchScalarField template.
Blended models are now registered and can be looked up in the same way
as regular interfacial models via the phaseSystem::lookupSubModel
method. For example, to access the blended drag model, the following
code could be used:
const BlendedInterfacialModel<dragModel>& drag =
fluid.lookupSubModel<BlendedInterfacialModel<dragModel>>
(
phasePair(gas, liquid)
);
Here, "fluid" is the phase system, and "gas" and "liquid" are the phase
models between which the blended drag model applies.
The implementation of the porousBafflePressure BC was incorrect in OpenFOAM-2.4
and earlier and corrected during the turbulence modeling rewrite for
OpenFOAM-3.0. This update introduced the density scaling required for the
definition of pressure in interFoam which requires the porosity coefficients to
be reduced.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2890
Also added tutorial case demonstrating usage. Note that the new drag
models are symmetric and should be used without any blending.
This work was supported by Georg Skillas and Zhen Li, at Evonik
It may be convenient to specify these directions un-normalized so it is
necessary to normalize them before they are used to calculate the force
coefficients.
which simplifies the reactingEulerFoam populationBalance test cases.
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden - Rossendorf (HZDR)
Sub-model blending should be set such that the sum of all the blending
coefficients equals one. If there are three models specified for a phase
pair (e.g., (air in water), (water in air) and (air and water)), then
the sum-to-one constraint is guaranteed by the blending functions.
Frequently, however, the symmetric model ((air and water) in this
example) is omitted. In that case, the blending coefficients should be
selected so that the sum of just the two non-symmetric coefficients
equal one.
In the case of linear blending, this means setting the minimum partially
continuous alpha to one-minus the fully continuous value of the opposite
phase. For example:
blending
{
default
{
type linear;
minFullyContinuousAlpha.air 0.7;
minPartlyContinuousAlpha.air 0.3;
minFullyContinuousAlpha.water 0.7;
minPartlyContinuousAlpha.water 0.3;
}
}
The reactingTwoPhaseEulerFoam and reactingMultiPhaseEulerFoam tutorials
have been modified to adhere to this principle.
Two new phase models have been added as selectable options for
reactingMultiphaseEulerFoam; pureStationaryPhaseModel and
pureStationaryIsothermalPhaseModel. These phases do not store a
velocity and their phase fractions remain constant throughout the
simulation. They are intended for use in modelling static particle beds
and other forms of porous media by means of the existing Euler-Euler
transfer models (drag, heat transfer, etc...).
Note that this functionality has not been extended to
reactingTwoPhaseEulerFoam, or the non-reacting *EulerFoam solvers.
Additional maintenance work has been carried out on the phase model
and phase system structure. The system can now loop over subsets of
phases with specific functionality (moving, multi-component, etc...) in
order to avoid testing for the existence of equations or variables in
the top level solver. The mass transfer handling and it's effect on
per-phase source terms has been refactored to reduce duplication. Const
and non-const access to phase properties has been formalised by renaming
non-const accessors with a "Ref" suffix, which is consistent with other
recent developments to classes including tmp and GeometricField, among
others. More sub-modelling details have been made private in order to
reduce the size of interfaces and improve abstraction.
This work was supported by Zhen Li, at Evonik
MULES and CMULES have been extended so that the limits can be supplied
as fields. These arguments are templated so that zeroField, oneField or
UniformField<scalar> can be used in place of a scalar value with no
additional overhead. The flux argument has been removed from the
unlimited CMULES correct functions in order to make this templating
possible.
An additional form of limit sum has also been added to MULES. This
limits the flux sum by ofsetting in proportion to the phase fraction,
rather than by reducing the magnitude of the fluxes with the same sign
as the imbalance. The new procedure makes it possible to limit the flux
sum in the presence of constraints without encountering a divide by
zero.
The initial set of cases in the test directory are aimed at testing the
reactingEulerFoam populationBalance functionality.
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden - Rossendorf (HZDR) and VTT Technical Research Centre of Finland Ltd.
Integrated with the "tutorials" functionality by CFD Direct Ltd.
Improvements to existing functionality
--------------------------------------
- MPI is initialised without thread support if it is not needed e.g. uncollated
- Use native c++11 threading; avoids problem with static destruction order.
- etc/cellModels now only read if needed.
- etc/controlDict can now be read from the environment variable FOAM_CONTROLDICT
- Uniform files (e.g. '0/uniform/time') are now read only once on the master only
(with the masterUncollated or collated file handlers)
- collated format writes to 'processorsNNN' instead of 'processors'. The file
format is unchanged.
- Thread buffer and file buffer size are no longer limited to 2Gb.
The global controlDict file contains parameters for file handling. Under some
circumstances, e.g. running in parallel on a system without NFS, the user may
need to set some parameters, e.g. fileHandler, before the global controlDict
file is read from file. To support this, OpenFOAM now allows the global
controlDict to be read as a string set to the FOAM_CONTROLDICT environment
variable.
The FOAM_CONTROLDICT environment variable can be set to the content the global
controlDict file, e.g. from a sh/bash shell:
export FOAM_CONTROLDICT=$(foamDictionary $FOAM_ETC/controlDict)
FOAM_CONTROLDICT can then be passed to mpirun using the -x option, e.g.:
mpirun -np 2 -x FOAM_CONTROLDICT simpleFoam -parallel
Note that while this avoids the need for NFS to read the OpenFOAM configuration
the executable still needs to load shared libraries which must either be copied
locally or available via NFS or equivalent.
New: Multiple IO ranks
----------------------
The masterUncollated and collated fileHandlers can now use multiple ranks for
writing e.g.:
mpirun -np 6 simpleFoam -parallel -ioRanks '(0 3)'
In this example ranks 0 ('processor0') and 3 ('processor3') now handle all the
I/O. Rank 0 handles 0,1,2 and rank 3 handles 3,4,5. The set of IO ranks should always
include 0 as first element and be sorted in increasing order.
The collated fileHandler uses the directory naming processorsNNN_XXX-YYY where
NNN is the total number of processors and XXX and YYY are first and last
processor in the rank, e.g. in above example the directories would be
processors6_0-2
processors6_3-5
and each of the collated files in these contains data of the local ranks
only. The same naming also applies when e.g. running decomposePar:
decomposePar -fileHandler collated -ioRanks '(0 3)'
New: Distributed data
---------------------
The individual root directories can be placed on different hosts with different
paths if necessary. In the current framework it is necessary to specify the
root per slave process but this has been simplified with the option of specifying
the root per host with the -hostRoots command line option:
mpirun -np 6 simpleFoam -parallel -ioRanks '(0 3)' \
-hostRoots '("machineA" "/tmp/" "machineB" "/tmp")'
The hostRoots option is followed by a list of machine name + root directory, the
machine name can contain regular expressions.
New: hostCollated
-----------------
The new hostCollated fileHandler automatically sets the 'ioRanks' according to
the host name with the lowest rank e.g. to run simpleFoam on 6 processors with
ranks 0-2 on machineA and ranks 3-5 on machineB with the machines specified in
the hostfile:
mpirun -np 6 --hostfile hostfile simpleFoam -parallel -fileHandler hostCollated
This is equivalent to
mpirun -np 6 --hostfile hostfile simpleFoam -parallel -fileHandler collated -ioRanks '(0 3)'
This example will write directories:
processors6_0-2/
processors6_3-5/
A typical example would use distributed data e.g. no two nodes, machineA and
machineB, each with three processes:
decomposePar -fileHandler collated -case cavity
# Copy case (constant/*, system/*, processors6/) to master:
rsync -a cavity machineA:/tmp/
# Create root on slave:
ssh machineB mkdir -p /tmp/cavity
# Run
mpirun --hostfile hostfile icoFoam \
-case /tmp/cavity -parallel -fileHandler hostCollated \
-hostRoots '("machineA" "/tmp" "machineB" "/tmp")'
Contributed by Mattijs Janssens
Specialized variants of the power law porosity and k epsilon turbulence models
developed to simulate atmospheric flow over forested and non-forested complex
terrain.
Class
Foam::powerLawLopesdaCosta
Description
Variant of the power law porosity model with spatially varying
drag coefficient
given by:
\f[
S = -\rho C_d \Sigma |U|^{(C_1 - 1)} U
\f]
where
\vartable
\Sigma | Porosity surface area per unit volume
C_d | Model linear coefficient
C_1 | Model exponent coefficient
\endvartable
Reference:
\verbatim
Costa, J. C. P. L. D. (2007).
Atmospheric flow over forested and non-forested complex terrain.
\endverbatim
Class
Foam::RASModels::kEpsilonLopesdaCosta
Description
Variant of the standard k-epsilon turbulence model with additional source
terms to handle the changes in turbulence in porous regions represented by
the powerLawLopesdaCosta porosity model.
Reference:
\verbatim
Costa, J. C. P. L. D. (2007).
Atmospheric flow over forested and non-forested complex terrain.
\endverbatim
The default model coefficients are
\verbatim
kEpsilonLopesdaCostaCoeffs
{
Cmu 0.09;
C1 1.44;
C2 1.92;
sigmak 1.0;
sigmaEps 1.3;
}
\endverbatim
Tutorial case to follow.
Replaced the ad hoc geometric mean blending with the more physical wall distance
Reynolds number blending function.
Additionally the part of the production term active for y+ < 11.6 has been
reinstated.
Sets the boundary values of p_rgh corresponding to a constant density hydrostatic
pressure distribution.
Description
This boundary condition provides a hydrostatic pressure condition for p_rgh,
calculated as:
\f[
p_{rgh} = p_{ref} - (\rho - \rho_0) g (h - h_{ref})
\f]
where
\vartable
p_{rgh} | Pseudo hydrostatic pressure [Pa]
p_{ref} | Static pressure at hRef [Pa]
h | Height in the opposite direction to gravity
h_{ref} | Reference height in the opposite direction to gravity
\rho | Density field
\rho_{ref} | Uniform reference density at boundary
g | Acceleration due to gravity [m/s^2]
\endtable
Usage
\table
Property | Description | Required | Default value
pRef | Reference static pressure | yes |
rhoRef | Reference density | yes |
rho | Density field name | no | rho
\endtable
Example of the boundary condition specification:
\verbatim
<patchName>
{
type prghUniformDensityHydrostaticPressure;
rhoRef 1000;
p 0;
value uniform 0; // optional initial value
}
\endverbatim
Partial elimination has been implemented for the multiphase Euler-Euler
solver. This does a linear solution of the drag system when calculating
flux and velocity corrections after the solution of the pressure
equation. This can improve the behaviour of the solution in the event
that the drag coupling is high. It is controlled by means of a
"partialElimination" switch within the PIMPLE control dictionary in
fvSolution.
A re-organisation has also been done in order to remove the exposure of
the sub-modelling from the top-level solver. Rather than looping the
drag, virtual mass, lift, etc..., models directly, the solver now calls
a set of phase-system methods which group the different force terms.
These new methods are documented in MomentumTransferPhaseSystem.H. Many
other accessors have been removed as a consequence of this grouping.
A bug was also fixed whereby the face-based algorithm was not
transferring the momentum associated with a given interfacial mass
transfer.
Description
Evaluates and writes the turbulence intensity field 'I'.
The turbulence intensity field 'I' is the root-mean-square of the turbulent
velocity fluctuations normalised by the local velocity magnitude:
\f[
I \equiv \frac{\sqrt{\frac{2}{3}\, k}}{U}
\f]
To avoid spurious extrema and division by 0 I is limited to 1 where the
velocity magnitude is less than the turbulent velocity fluctuations.
Example of function object specification:
\verbatim
functions
{
.
.
.
turbulenceIntensity
{
type turbulenceIntensity;
libs ("libfieldFunctionObjects.so");
}
.
.
.
}
\endverbatim
or using the standard configuration file:
\verbatim
functions
{
.
.
.
#includeFunc turbulenceIntensity
.
.
.
}
\endverbatim
This change means that getApplication still works if we have a
controlDict.orig, rather than a controlDict. This allows us to simplify
the scripting of tutorials in which the controlDict is modified.
Minmod is the default limiter function and specified with an explicit name e.g.:
gradSchemes
{
default Gauss linear;
limited cellLimited Gauss linear 1;
}
Venkatakrishnan and cubic limiter functions are also provided and may be
specified explicitly e.g.:
gradSchemes
{
default Gauss linear;
limited cellLimited<Venkatakrishnan> Gauss linear 1;
}
or
gradSchemes
{
default Gauss linear;
limited cellLimited<cubic> 1.5 Gauss linear 1;
}
The standard minmod function is recommended for most applications but if
convergence or stability problems arise it may be beneficial to use one of the
alternatives which smooth the gradient limiting. The Venkatakrishnan is not
well formulated and allows the limiter to exceed 1 whereas the cubic limiter is
designed to obey all the value and gradient constraints on the limiter function,
see
Michalak, K., & Ollivier-Gooch, C. (2008).
Limiters for unstructured higher-order accurate solutions
of the Euler equations.
In 46th AIAA Aerospace Sciences Meeting and Exhibit (p. 776).
The cubic limiter function requires the transition point at which the limiter
function reaches 1 is an input parameter which should be set to a value between
1 and 2 although values larger than 2 are physical but likely to significantly
reduce the accuracy of the scheme.
The tutorial demonstrates generation of a C-grid mesh using blockMesh
The geometry is provided by a surface mesh (OBJ file) of the NACA0012 aerofoil
The case is setup with a freestream flow speed of Ma=0.72
Thanks to Kai Bastos at Duke University for the geometry and helpful input.
Some tutorials have had Allrun scripts added in order to run setFields,
which was previously omitted. Others have had nonuniform field files in
the 0 directory replaced by uniform files with .orig extensions.
These BCs blend between typical inflow and outflow conditions based on the
velocity orientation.
airFoil2D tutorial updated to demonstrate these new BCs.
Without -fields specified mergeOrSplitBaffles now manipulates the mesh only and
with the -fields option also updates the fields corresponding to the mesh change.
Now if a <field> file does not exist first the compressed <field>.gz file is
searched for and if that also does not exist the <field>.orig file is searched
for.
This simplifies case setup and run scripts as now setField for example can read
the <field>.orig file directly and generate the <field> file from it which is
then read by the solver. Additionally the cleanCase function used by
foamCleanCase and the Allclean scripts automatically removed <field> files if
there is a corresponding <field>.orig file. So now there is no need for the
Allrun scripts to copy <field>.orig files into <field> or for the Allclean
scripts to explicitly remove them.
This is a CHT case which uses snappyHexMesh. It is a tutorial, in the
traditional sense, in that it has been designed for training purposes.
It does not rely on changeDictionary, surface utilities, or extensive
scripting.
This work was supported by Colin Moughton, at Strix
A lower limit of one on the number of particles represented by a single
parcel has been removed from the injection models. It may be appropriate
to simulate the statistical behaviour of a particulate flow with more
lagrangian elements than physical particles. A unity lower limit does
not permit this.
The limit was, in some situations, also causing the large-diameter end
of an injected distribution to be clipped.
This resolves bug report https://bugs.openfoam.org/view.php?id=2837
The logic governing function objects' ability to change the time-step
has been modified so that it is compatible with the time-step adjustment
done in the Time class. The behaviour has been split into a method which
sets the step directly, and another which moidifies the time until the
next write operation (i.e., the time that the solver "aims" for).
This fixes an issue where the adjustments in Time and the function
objects interfere and cause the time step to decrease exponentially down
to machine precision. It also means that the set-time-step function
object now does not break the adjustable run-time setting.
This resolves bug report https://bugs.openfoam.org/view.php?id=2820
Splitting MPI_COMM_FOAM from MPI_COMM_WORLD allows OpenFOAM to be linked with
other libraries communicating via MPI.
Resolves feature request https://bugs.openfoam.org/view.php?id=2815
Multi-region PIMPLE controls have been applied to the chtMultiRegionFoam
solver, and a transonic option has been implemented.
The new PIMPLE controls let the solver operate SIMPLE mode. The
utilisation of library solution and convergence control functionality
has significantly reduced the amount of code in the solver. The
chtMultiRegionSimpleFoam solver has also been made obsolete, and has
therefore been removed.
A few changes will be necessary to convert an existing
chtMultiRegionSimpleFoam case to chtMultiRegionFoam. All the SIMPLE
sub-dictionaries in the system/<regions>/fvSolution will need to be
renamed PIMPLE. The system/fvSolution file will also need an empty
PIMPLE sub-dictionary. In addition, additional "<variable>Final" solver
and relaxation entries will be needed. For a steady case, adding a
wildcard ending, ".*", to the variable names should be sufficient.
Solution parameters appropriate for a steady case are shown below:
solvers
{
"p_rgh.*"
{
solver GAMG;
tolerance 1e-7;
relTol 0.01;
smoother DIC;
maxIter 10;
}
"(U|h|e|k|epsilon).*"
{
solver PBiCGStab;
preconditioner DILU;
tolerance 1e-7;
relTol 0.1;
}
}
PIMPLE
{
// ...
}
relaxationFactors
{
fields
{
"p_rgh.*" 0.7;
}
equations
{
"U.*" 0.5;
"(h|e).*" 0.3;
"(k|epsilon).*" 0.2;
}
}
This work was supported by Fabian Buelow, at Evonik
Tobias Holzmann provided cases for testing the convergence controls
The solution controls have been rewritten for use in multi-region
solvers, and PIMPLE fluid/solid solution controls have been implemented
within this framework.
PIMPLE also now has time-loop convergence control which can be used to
end the simulation once a certain initial residual is reached. This
allows a PIMPLE solver to run with equivalent convergence control to a
SIMPLE solver. Corrector loop convergence control is still available,
and can be used at the same time as the time-loop control.
The "residualControl" sub-dictionary of PIMPLE contains the residual
values required on the first solve of a time-step for the simulation to
end. This behaviour is the same as SIMPLE. The
"outerCorrectorResidualControl" sub-dictionary contains the tolerances
required for the corrector loop to exit. An example specification with
both types of control active is shown below.
PIMPLE
{
// ...
residualControl
{
p 1e-3;
U 1e-4;
"(k|epsilon|omega)" 1e-3;
}
outerCorrectorResidualControl
{
U
{
tolerance 1e-4;
relTol 0.1;
}
"(k|epsilon|omega)"
{
tolerance 1e-3;
relTol 0.1;
}
}
}
Note that existing PIMPLE "residualControl" entries will need to be
renamed "outerCorrectorResidualControl".
Application within a solver has also changed slightly. In order to have
convergence control for the time loop as a whole, the
solutionControl::loop(Time&) method (or the equivalent run method) must
be used; i.e.,
while (simple.loop(runTime))
{
Info<< "Time = " << runTime.timeName() << nl << endl;
// solve ...
}
or,
while (pimple.run(runTime))
{
// pre-time-increment operations ...
runTime ++;
Info<< "Time = " << runTime.timeName() << nl << endl;
// solve ...
}
In constant/chemistryProperties in addition to the specification of the initial
ODE integration time-step used at the start of the run:
initialChemicalTimeStep 1e-12;
this time step may now also be specified for every chemistry integration by
setting the optional entry maxChemicalTimeStep, e.g.
maxChemicalTimeStep 1e-12;
OpenFOAM can now be compiled with single, double or long double scalars by
setting the WM_PRECISION_OPTION environment variable to either SP, DP or LP
respectively.
On most 64bit systems long double is stored as 128bit but computed in the
floating point hardware to 80bit. Due to the increased storage compared to
double precision cache and memory access is significantly more time consuming
causing a slow-down of floating point intensive operations by a factor of 2 to
3.
An unintended change in the running-state logic was introduced by commit
9a35ce69. The running state should only be re-evaluated when in the
simulation is not ending. The "execute/end" function object invocation
should not be permitted to change the running state. The simulation
should always end if this state is reached.
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this. The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:
GREAT -> great
ROOTGREAT -> rootGreat
VGREAT -> vGreat
ROOTVGREAT -> rootVGreat
SMALL -> small
ROOTSMALL -> rootSmall
VSMALL -> vSmall
ROOTVSMALL -> rootVSmall
The original capitalized are still currently supported but their use is
deprecated.
Introduced thermalPhaseChangePopulationBalanceTwo- and MultiphaseSystem as
user-selectable phaseSystems which are the first to actually use multiple mass
transfer mechanisms enabled by
commit d3a237f560.
The functionality is demonstrated using the reactingTwoPhaseEulerFoam
wallBoilingPolydisperse tutorial.
Patch contributed by VTT Technical Research Centre of Finland Ltd and Institute
of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR).
and optionally the CPU and clock times per time step.
Example of function object specification:
time
{
type time;
libs ("libutilityFunctionObjects.so");
writeControl timeStep;
writeInterval 1;
perTimeStep no;
}
Adding
#includeFunc time
to the functions list in the controlDict of the motorBike tutorial generates
0 1.190000e+00 1
1 1.640000e+00 1
2 1.940000e+00 2
Enabling the optional writing of the CPU and clock time per time step is
straight forward:
#includeFunc time(perTimeStep=yes)
With the writeJobInfo option in OpenFOAM-dev/etc/controlDict::InfoSwitches set
to 1 each OpenFOAM executable writes a <executable>.<pid> file containing the
job summary into the <case>/jobInfo directory, e.g. after running the
tutorials/incompressible/pisoFoam/RAS/cavity tutorials
tutorials/incompressible/pisoFoam/RAS/cavity/jobInfo contains
blockMesh.20169 pisoFoam.20170
When etc/controlDict::writeJobInfo is set to 1 jobInfo.<pid> files are written
to the case directory containing a summary of the execution of the job containing
startDate
startTime
userName
foamVersion
code
argList
currentDir
PPID
PGID
foamBuild
root
case
nProcs
When the job completes the following additional entries are written:
cpuTime
endDate
endTime
termination
The original etc/controlDict::writeJobInfo control has been renamed writeJobControl and when set
to 1 writes the ~/OpenFOAM/jobControl/runningJobs and finishedJobs files for job control.
This removes a class of flux-velocity decoupling ("staggering") relating to the
interaction between the virtual mass, lift and turbulent dispersion forces.
The ramp function used to graduate the vertical damping force can now be
applied along a number of paths, rather than just one. The keywords
"origins" and "directions" can be used to define a list of paths.
verticalDamping1
{
type verticalDamping;
origins ((1200 0 0) (1200 100 0) (1200 -100 0));
directions ((1 0 0) (0 1 0) (0 -1 0));
// ...
}
The ramping function will be calculated along each of the paths defined
by the origin-direction pair, and the maximum of the calculated values
will be used.
The "origin" and "direction" keywords can still be used with non-list
values.
This work was supported by Jan Kaufmann and Jan Oberhagemann at DNV GL.
First run the surfaceFeatureExtract with the "closeness" option enabled in the
surfaceFeatureExtractDict to extract the surface closeness point field
// Out put the closeness of surface elements to other surface elements.
closeness yes;
Then enable cell sizing based on local surface closeness by specifying the
"internalCloseness" options in the foamyHexMeshDict e.g.
motionControl
{
defaultCellSize 4;
minimumCellSizeCoeff 0.1;
maxSmoothingIterations 100;
maxRefinementIterations 2;
shapeControlFunctions
{
geometry
{
type searchableSurfaceControl;
priority 1;
mode inside;
surfaceCellSizeFunction nonUniformField;
cellSizeCalculationType automatic;
curvature false;
curvatureFile dummy;
featureProximity false;
featureProximityFile dummy;
internalCloseness true;
internalClosenessFile geometry.internalPointCloseness;
internalClosenessCellSizeCoeff 25;
curvatureCellSizeCoeff 0;
maximumCellSizeCoeff 1;
cellSizeFunction uniform;
}
}
}
e.g.
postProcess -func sample -region bottomWater
will now search for the system/bottomWater/sample dictionary before searching
for system/sample so that the fields and type of sampling can optionally be
specified differently for the particular region.
Resolves feature request https://bugs.openfoam.org/view.php?id=2807
This function object will write a paraview-viewable field showing the
area-density of parcel collisions on every patch face. It also outputs
the rate of collisions hitting each patch face, calculated over an
interval equal to the time elapsed since the last output. It has an
optional entry to specify a minimum incident speed below which a
collision is not counted.
It can be enabled in the cloud properties file as follows:
cloudFunctions
{
patchCollisionDensity1
{
type patchCollisionDensity;
minSpeed 1e-3; // (optional)
}
}
This work was supported by Anton Kidess, at Hilti
The onset of vertical damping can now be graduated over a distance. The
user specifies an origin and a direction along which the graduation
occurs, and a ramping function to specify the form of the graduation. An
example specification for the fvOption is:
verticalDamping1
{
type verticalDamping;
selectionMode all;
origin (1200 0 0);
direction (1 0 0);
ramp
{
type halfCosineRamp;
start 0;
duration 600;
}
lambda [0 0 -1 0 0 0 0] 1; // Damping coefficient
timeStart 0;
duration 1e6;
}
If the origin, direction or ramp entries are omitted then the fvOption
functions as before; applying the damping to the entire volume or the
specified cell set.
This work was supported by Jan Kaufmann and Jan Oberhagemann at DNV GL.
The outletPhaseMeanVelocity and waveVelocity boundary conditions now
support a "ramp" keyword, for which a function can be supplied to
gradually increase the input velocity. The following is an example
specification for an outlet patch:
outlet
{
type outletPhaseMeanVelocity;
Umean 2;
ramp
{
type quarterSineRamp;
start 0;
duration 5;
}
alpha alpha.water;
}
There is also a new velocityRamping function object, which provides a
matching force within the volume of the domain, so that the entire flow
is smoothly accelerated up to the operating condition. An example
specification is as follows:
velocityRamping
{
type velocityRamping;
active on;
selectionMode all;
U U;
velocity (-2 0 0);
ramp
{
type quarterSineRamp;
start 0;
duration 5;
}
}
These additions have been designed to facilitate a smoother startup of
ship simulations by avoiding the slamming transients associated with
initialising a uniform velocity field.
This work was supported by Jan Kaufmann and Jan Oberhagemann at DNV GL.
chtMultiRegionSimpleFoam needs to check whether or not the simulation is
at the end. To facilitate this, a Time::running method has been added.
The Time::run method was being used for this purpose, but this lead to
function objects being executed multiple times.
This resolves bug report https://bugs.openfoam.org/view.php?id=2804
Using the noSlip boundary condition for rotating wall in an MRF region
interferes with post-processing by resetting the wall velocity to 0 rather than
preserving the value set by the MRF zone.
Removed possibility for the user to specify a driftRate in the constantDrift
model which is independent of a fvOptions mass source. The driftRate must be
calculated from/be consistent with the mass source in order to yield a particle
number conserving result.
Made calculation of the over-all Sauter mean diameter of an entire population
balance conditional on more than one velocityGroup being present. This diameter
field is for post-processing purposes only and would be redundant in case of one
velocityGroup being used.
Solution control is extended to allow for solution of the population balance
equation at the last PIMPLE loop only, using an optional switch. This can be
beneficial in terms of simulation time as well as coupling between the
population balance based diameter calculation and the rest of the equation
system.
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf
(HZDR) and VTT Technical Research Centre of Finland Ltd.
allow renormalization of sizeGroup volume fractions for restarts involving
initial conditions with a slight degree of unboundedness
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf
(HZDR) and VTT Technical Research Centre of Finland Ltd.
which provides access to the current phase and the corresponding other phase for
each of the phases in the pair. This allows some simplification of the phase
pair loops in several sub-models and avoids the need for pointer swaps.
The number of characters needed to print a double in scientific format
is 8 plus the number of decimal places; e.g., -6.453452e-231 (6 decimal
places, 14 characters). This has been set in writeFile.C, replacing a
value of 7. Presumably, the case of three digits in the exponent was not
considered when this was first implemented. This change ensures at least
one character of whitespace between tabulated numbers.
This resolves bug report https://bugs.openfoam.org/view.php?id=2801
Checking a pair contains a particular phase and adding a contribution from the
"other" phase can now be written:
if (pair.contains(phase))
{
const phaseModel& otherPhase = pair.other(phase);
phiHbyAs[phasei] +=
fvc::interpolate(rAUs[phasei]*K)
*MRF.absolute(otherPhase.phi());
HbyAs[phasei] += rAUs[phasei]*K*otherPhase.U();
}
which previously would have been written as a loop over the pair and excluding
self reference:
const phaseModel* phase1 = &pair.phase1();
const phaseModel* phase2 = &pair.phase2();
forAllConstIter(phasePair, pair, iter)
{
if (phase1 == &phase)
{
phiHbyAs[phasei] +=
fvc::interpolate(rAUs[phasei]*K)
*MRF.absolute(phase2->phi());
HbyAs[phasei] += rAUs[phasei]*K*phase2->U();
}
Swap(phase1, phase2);
}
This patch enables the reactingEulerFoam solvers to simulate polydisperse flow
situations, i.e. flows where the disperse phase is subject to a size
distribution.
The newly added populationBalanceModel class solves the integro-partial
differential population balance equation (PBE) by means of a class method, also
called discrete or sectional method. This approach is based on discretizing the
PBE over its internal coordinate, the particle volume. This yields a set of
transport equations for the number concentration of particles in classes with a
different representative size. These are coupled through their source-terms and
solved in a segregated manner. The implementation is done in a way, that the
total particle number and mass is preserved for coalescence, breakup and drift
(i.e. isothermal growth or phase change) processes, irrespective of the chosen
discretization over the internal coordinate.
A population balance can be split over multiple velocity (temperature) fields,
using the capability of reactingMultiphaseEulerFoam to solve for n momentum
(energy) equations. To a certain degree, this takes into account the dependency
of heat- and momentum transfer on the disperse phase diameter. It is also possible
to define multiple population balances, e.g. bubbles and droplets simultaneously.
The functionality can be switched on by choosing the appropriate phaseSystem
type, e.g. populationBalanceMultiphaseSystem and the newly added diameterModel
class called velocityGroup. To illustrate the use of the functionality, a
bubbleColumnPolydisperse tutorial was added for reactingTwoPhaseEulerFoam and
reactingMultiphaseEulerFoam.
Furthermore, a reactingEulerFoam-specific functionObject called sizeDistribution
was added to allow post-Processing of the size distribution, e.g. to obtain the
number density function in a specific region.
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf
(HZDR) and VTT Technical Research Centre of Finland Ltd.
- Thermal phase change and wall boiling functionality has been generalized to
support two- and multi- phase simulations.
- Thermal phase change now also allows purePhaseModel, which simplifies case setup.
- The phaseSystem templates have been restructured in preparation of multiple
simultaneous mass transfer mechanisms. For example, combination of thermal phase
and inhomogeneous population balance models.
Patch contributed by VTT Technical Research Centre of Finland Ltd and Institute
of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR).
Thermo and reaction thermo macros have been renamed and refactored. If
the name is plural (make???Thermos) then it adds the model to all
selection tables. If not (make???Thermo) then it only adds to the
requested psi or rho table.
A pureMixture can now be specified in a reacting solver. This further
enhances compatibility between non-reacting and reacting solvers.
To achieve this, mixtures now have a typeName function of the same form
as the lower thermodyanmic models. In addition, to avoid name clashes,
the reacting thermo make macros have been split into those that create
entries on multiple selection tables, and those that just add to the
reaction thermo table.
When the constant/combustionProperties dictionary is missing, the solver
will now default to the "none" model. This is consistent with how
radiation models are selected.
This mixture allows a reacting solver to be used with a single component
fluid without the additional case files usually required for reacting
thermodynamics.
The absolute value of the the time has been added to the rigid body
model state. This value is not directly necessary for calculating the
evolution of the rigid body system, it just facilitates the
implementation of sub-models which are in some way time-dependent.
The face-based momentum equation formulation introduced to twoPhaseEulerFoam by
commit 16f03f8a39 has proven particularly valuable
for bubbly flow simulations. The formulation is also available for
reactingTwoPhaseEulerFoam and this patch adds the the same capability to
reactingMultiphaseEulerFoam.
It be switched on by setting the optional faceMomentum entry in the PIMPLE
sub-dictionary in fvSolution:
PIMPLE
{
nOuterCorrectors 3;
nCorrectors 1;
nNonOrthogonalCorrectors 0;
faceMomentum yes;
}
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf
(HZDR) and VTT Technical Research Centre of Finland Ltd.
Wrapped combustion model make macros in the Foam namespace and removed
combustion model namespace from the base classes. This fixes a namespace
specialisation bug in gcc 4.8. It is also somewhat less verbose in the
solvers.
This resolves bug report https://bugs.openfoam.org/view.php?id=2787
The combustion and chemistry model selection has been simplified so
that the user does not have to specify the form of the thermodynamics.
Examples of new combustion and chemistry entries are as follows:
In constant/combustionProperties:
combustionModel PaSR;
combustionModel FSD;
In constant/chemistryProperties:
chemistryType
{
solver ode;
method TDAC;
}
All the angle bracket parts of the model names (e.g.,
<psiThermoCombustion,gasHThermoPhysics>) have been removed as well as
the chemistryThermo entry.
The changes are mostly backward compatible. Only support for the
angle bracket form of chemistry solver names has been removed. Warnings
will print if some of the old entries are used, as the parts relating to
thermodynamics are now ignored.
for incompressible flow simulated using simpleFoam, pimpleFoam or pisoFoam.
Description
Calculates and write the estimated incompressible flow heat transfer
coefficient at wall patches as the volScalarField field
'wallHeatTransferCoeff'.
All wall patches are included by default; to restrict the calculation to
certain patches, use the optional 'patches' entry.
Example of function object specification:
wallHeatTransferCoeff1
{
type wallHeatTransferCoeff;
libs ("libfieldFunctionObjects.so");
...
region fluid;
patches (".*Wall");
rho 1.225;
Cp 1005;
Prl 0.707;
Prt 0.9;
}
Usage
Property | Description | Required | Default value
type | Type name: wallHeatTransferCoeff | yes |
patches | List of patches to process | no | all wall patches
region | Region to be evaluated | no | default region
rho | Fluid density | yes |
Cp | Fluid heat capacity | yes |
Prl | Fluid laminar Prandtl number | yes |
Prt | Fluid turbulent Prandtl number| yes |
Note
Writing field 'wallHeatTransferCoeff' is done by default, but it can be
overridden by defining an empty \c objects list. For details see
writeLocalObjects.
This generalizes and replaces the previous "noBanner" option provided by argList
and is extended to include the messages printed by Time.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2782
and replaced multiphaseInterDyMFoam with a script which reports this change.
The multiphaseInterDyMFoam tutorials have been moved into the multiphaseInterFoam directory.
This change is one of a set of developments to merge dynamic mesh functionality
into the standard solvers to improve consistency, usability, flexibility and
maintainability of these solvers.
Henry G. Weller
CFD Direct Ltd.
Mixture molecular weight is now evaluated in heThermo like everything
else, relying on the low level specie mixing rules. Units have also been
corrected.
and replaced interDyMFoam with a script which reports this change.
The interDyMFoam tutorials have been moved into the interFoam directory.
This change is one of a set of developments to merge dynamic mesh functionality
into the standard solvers to improve consistency, usability, flexibility and
maintainability of these solvers.
Henry G. Weller
CFD Direct Ltd.
This is a quick fix. What actually needs doing is the Random and
cachedRandom classes need rewriting in terms of the random number
functionality in the C++11 STL. These can be initialised/seeded
per-object, which makes this sort of bug go away.
This resolves bug report https://bugs.openfoam.org/view.php?id=2772
The integration splitting implemented in commit a5806207 has been shown
to be incorrect in some cases. A new procedure has been implemented
which can correctly split the implicit-explicit integral into a number
of pieces, in order to calculate the contribution of each. This is
intended for integrating coupled and non-coupled particle momentum and
heat transfers.
However, currently there is only ever one implicit coefficient used in
these transfers (there is no implicit non-coupled contribution). The
evaluation has therefore been short-cutted to only do the integration
with respect to the coupled contributions. The splitting functionality
has been retained in case additional separate implicit coefficients are
required in the future.
This change was made with help from Timo Niemi, VTT
This resolves bug report https://bugs.openfoam.org/view.php?id=2666
The combustion and chemistry models no longer select and own the
thermodynamic model; they hold a reference instead. The construction of
the combustion and chemistry models has been changed to require a
reference to the thermodyanmics, rather than the mesh and a phase name.
At the solver-level the thermo, turbulence and combustion models are now
selected in sequence. The cyclic dependency between the three models has
been resolved, and the raw-pointer based post-construction step for the
combustion model has been removed.
The old solver-level construction sequence (typically in createFields.H)
was as follows:
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(mesh)
);
psiReactionThermo& thermo = combustion->thermo();
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, thermo)
);
combustion->setTurbulence(*turbulence);
The new sequence is:
autoPtr<psiReactionThermo> thermo(psiReactionThermo::New(mesh));
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, *thermo)
);
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(*thermo, *turbulence)
);
and replaced rhoPimpleDyMFoam with a script which reports this change.
The rhoPimpleDyMFoam tutorials have been moved into the rhoPimpleFoam directory.
This change is the first of a set of developments to merge dynamic mesh
functionality into the standard solvers to improve consistency, usability,
flexibility and maintainability of these solvers.
Henry G. Weller
CFD Direct Ltd.
and replaced pimpleDyMFoam with a script which reports this change.
The pimpleDyMFoam tutorials have been moved into the pimpleFoam directory.
This change is the first of a set of developments to merge dynamic mesh
functionality into the standard solvers to improve consistency, usability,
flexibility and maintainability of these solvers.
Henry G. Weller
CFD Direct Ltd.
Now pimpleDyMFoam is exactly equivalent to pimpleFoam when running on a
staticFvMesh. Also when the constant/dynamicMeshDict is not present a
staticFvMesh is automatically constructed so that the pimpleDyMFoam solver can
run any pimpleFoam case without change.
The new momentum stress model selector class
compressibleInterPhaseTransportModel is now used to select between the options:
Description
Transport model selection class for the compressibleInterFoam family of
solvers.
By default the standard mixture transport modelling approach is used in
which a single momentum stress model (laminar, non-Newtonian, LES or RAS) is
constructed for the mixture. However if the \c simulationType in
constant/turbulenceProperties is set to \c twoPhaseTransport the alternative
Euler-Euler two-phase transport modelling approach is used in which separate
stress models (laminar, non-Newtonian, LES or RAS) are instantiated for each
of the two phases allowing for different modeling for the phases.
Mixture and two-phase momentum stress modelling is now supported in
compressibleInterFoam, compressibleInterDyMFoam and compressibleInterFilmFoam.
The prototype compressibleInterPhaseTransportFoam solver is no longer needed and
has been removed.
The method used to calculate area overlaps between coupled AMI patches
has been made run-time selectable from the polyPatch dictionary. This
has primarily been done to facilitate the selection of the new swept AMI
method. The selection can be made within the constant/polyMesh/boundary
file as follows:
AMI1
{
type cyclicAMI;
inGroups 2(cyclicAMI rotating);
nFaces 524;
startFace 37176;
matchTolerance 0.0001;
transform unknown;
neighbourPatch AMI2;
method sweptFaceAreaWeightAMI; // <-- new entry
}
AMI2
{
type cyclicAMI;
inGroups 2(cyclicAMI rotating);
nFaces 524;
startFace 37700;
matchTolerance 0.0001;
transform unknown;
neighbourPatch AMI1;
method sweptFaceAreaWeightAMI; // <-- new entry
}
This can also be done within the patch specification section of the
blockMeshDict, or within a createBafflesDict.
The default remains the faceAreaWeightAMI method.
This change tests all edges when breaking strings, not just those
connected to collapsing cells. In rare cases a cell can collapse despite
none of it's connected edges being marked as collapsing, because enough
of it's points collapse together via other edges.
Another exception has been added to globalIndexAndTransform to prevent
transformations being generated from coupled patch pairs marked with
coincident-full-match transformations. Foamy generates such patches, and
the faces on them at intermediate stages of meshing can be degenerate,
making the calculation of transformations unreliable. This change
enforces the definition that coincident-full-match patch pairs are not
transformed.
In the event that matching centroids across a coupled patch pair fails,
we fall back to matching the face point average. The latter can be
obtained more reliably on degenerate faces as the calculation does not
involve division by the face area.
This fallback was already implemented as part of processorPolyPatch.
This change also applies it to the faceCoupleInfo class used by
reconstructParMesh.
The continuation line are denoted by the \\ characters at the end of the
previous line e.g.
\table
Property | Description | Required | Default value
setAverage | Switch to activate setting of average value | no | false
perturb | Perturb points for regular geometries | no | 1e-5
fieldTableName | Alternative field name to sample | no| this field name
mapMethod | Type of mapping | no | planarInterpolation
offset | Offset to mapped values | no | Zero
dataDir | Top-level directory of the points and field data \\
| no | constant/boundaryData/\<patch name\>
points | Path including name of points file relative to dataDir \\
| no | points
sample | Name of the sub-directory in the time directories \\
containing the fields | no | ""
\endtable
Description
This boundary conditions interpolates the values from a set of supplied
points in space and time.
By default the data files should be provide in
constant/boundaryData/\<patch name\>/ directory:
- points : pointField of locations
- \<time\>/\<field\> : field of values at time \<time\>
Alternatively the names and locations of the points and field files may be
specified explicitly via the optional dictionary entries:
- dataDir \<optional top-level directory of the points and field data>;
- points \<optional path including name of points file relative to
dataDir\>;
- sample \<optional name of the sub-directory in the time directories
containing the fields\>;
This is particularly useful when mapping data from another case for which
the \c sample \c functionObject is used to obtain the patch field data for
mapping.
For example to specify that the point and field data should be mapped from
<source case name> the patch boundary condition would be written
<patch name>
{
type timeVaryingMappedFixedValue;
dataDir "../<source case name>/postProcessing/sample";
points "0/<sample name>/faceCentres";
sample <sample name>;
}
In the above the source case directory is referred to relative to the current
case but the file and directory names are expanded so that environment variables
may be used.
This method projects the source patch to the target using the point
normals. The projection fills space, which results in target weights
that correctly sum to unity. A source patch face can still project onto
an area larger or smaller than the face, so the source weights do not
(in general) sum to unity as a result of this method.
This has not been made the default AMI method. Further investigation is
needed to asses the benefits of this sort of projection.
The maximum walk angle determines the angle at which the face-face walk
stops. For some methods, this prevents calculation of overlaps on pairs
of faces which do not project on to each other. Derived AMI methods can
now override this angle as appropriate for their projection procedure.
The patch magSf calculation has been changed so that it uses the same
triangulation as the overlap algorithm. This improves consistency and
means that for exactly conforming patches (typically before any mesh
motion) the weights do not require normalisation.
In this version of compressibleInterFoam separate stress models (laminar,
non-Newtonian, LES or RAS) are instantiated for each of the two phases allowing
for completely different modeling for the phases.
e.g. in the climbingRod tutorial case provided a Newtonian laminar model is
instantiated for the air and a Maxwell non-Newtonian model is instantiated for
the viscoelastic liquid. To stabilize the Maxwell model in regions where the
liquid phase-fraction is 0 the new symmTensorPhaseLimitStabilization fvOption is
applied.
Other phase stress modeling combinations are also possible, e.g. the air may be
turbulent but the liquid laminar and an RAS or LES model applied to the air
only. However, to stabilize this combination a suitable fvOption would need to
be applied to the turbulence properties where the air phase-fraction is 0.
Henry G. Weller, Chris Greenshields
CFD Direct Ltd.
so the write thread does not have to do any parallel communication. This avoids
the bugs in the threading support in OpenMPI.
Patch contributed by Mattijs Janssens
Resolves bug-report https://bugs.openfoam.org/view.php?id=2669
This ensures that the fvOptions are constructed for the -postProcessing option
so that functionObjects which process fvOption data operate correctly in this
mode.
To unsure fvOptions are instantiated for post-processing createFvOptions.H must
be included in createFields.H rather than in the solver directly.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2733
The restraints generate either joint-local (tau) or global (fx) forces.
At the moment they all generate the latter. This change corrects three
of the four restraints so that the forces are in the gobal coordinate
system and not the local coordinate system of the body.
The problem with this is that the forward dynamics code then transforms
most of the forces back to the body local coordinate system. A better
solution would be to associate restraints which are more sensibly
defined in a local frame with the joints instead of the bodies, and
return the forces as part of the tau variable.
Corrected a few issues with the utilisation of the tracking within the
nearWallFields function object. The tracking is now done over a
displacement from the initial location, which prevents trying to track
to a location outside the mesh when the patch face is warped and the
centre lies outside the tracking decomposition. Also fixed the end
criteria so that it does not suffer from round off error in the step
fraction.
The upshot of these changes is that the faces on which the near wall
cells were not being set are now being set properly, and uninitialised
data is no longer being written out.
Removed all the special handling for awkward particles from the
nearWallFields function object. The version 5+ tracking already handles
this more robustly.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2728
Two boundary conditions for the modelling of semi-permeable baffles have
been added. These baffles are permeable to a number of species within
the flow, and are impermeable to others. The flux of a given species is
calculated as a constant multipled by the drop in mass fraction across
the baffle.
The species mass-fraction condition requires the transfer constant and
the name of the patch on the other side of the baffle:
boundaryField
{
// ...
membraneA
{
type semiPermeableBaffleMassFraction;
samplePatch membranePipe;
c 0.1;
value uniform 0;
}
membraneB
{
type semiPermeableBaffleMassFraction;
samplePatch membraneSleeve;
c 0.1;
value uniform 1;
}
}
If the value of c is omitted, or set to zero, then the patch is
considered impermeable to the species in question. The samplePatch entry
can also be omitted in this case.
The velocity condition does not require any special input:
boundaryField
{
// ...
membraneA
{
type semiPermeableBaffleVelocity;
value uniform (0 0 0);
}
membraneB
{
type semiPermeableBaffleVelocity;
value uniform (0 0 0);
}
}
These two boundary conditions must be used in conjunction, and the
mass-fraction condition must be applied to all species in the
simulation. The calculation will fail with an error message if either is
used in isolation.
A tutorial, combustion/reactingFoam/RAS/membrane, has been added which
demonstrates this transfer process.
This work was done with support from Stefan Lipp, at BASF.
The forces function object, when specified with a full coordinate
system, previously wrote forces and moments out in the following format:
time-0 forces-0 moments-0
time-0 localForces-0 localMoments-0
time-1 forces-1 moments-1
time-1 localForces-1 localMoments-1
# etc ...
There are two rows of values per time. This complicates the definition
of the table and means that filtering has to be done before the data
series can be visualised. The format has now been changed to the
following form:
time-0 forces-0 moments-0 localForces-0 localMoments-0
time-1 forces-1 moments-1 localForces-1 localMoments-1
# etc ...
There is one row per time, and each column is therefore a continuous
series of one variable that can be plotted.
To disable face correspondence checking set
checkFaceCorrespondence off;
in blockMeshDict. This is necessary in the rare cases where adjacent block
faces do not need to correspond because they are geometrically collapsed,
e.g. to form a pole/axis.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2711
A patch can now be assigned to a baffle surface. This assignment will
take precedence over any face-zones.
surfaceConformation
{
locationInMesh (0 0 0);
geometryToConformTo
{
disk
{
featureMethod extractFeatures;
includedAngle 120;
meshableSide both; // <-- baffle
patchInfo
{
type wall;
inGroups (walls);
}
}
// ...
}
}
Foamy surface conformation entries have a "meshableSide" entry which
controls which side of the surface is to be meshed. Typically this is
set "inside" for boundaries and "both" for baffles. A sub-region's
default entry is now taken from it's parent, rather than a specific
value (it was "inside"). This is consistent with how other entries are
handled.
surfaceConformation
{
locationInMesh (0 0 0);
geometryToConformTo
{
baffle
{
featureMethod extractFeatures;
includedAngle 120;
meshableSide both; // <-- per-surface setting
regions
{
disk
{
meshableSide both; // <-- per-region setting*
// *in this example, this entry is not needed, as it
// is taken from the per-surface setting above
}
}
}
// ...
}
}
Specifying default fields for complex and multi-phase cases is simplified and
generalized by using wildcards to select sets of related field names, e.g.
defaultFields (p p_rgh U "U\..*" T "T\..*" "alpha\..*");
selects the velocity, temperature and phase-fraction fields of all phases in
addition to the pressure fields.
The default patch types specified in the new defaultPatchTypes entry of the
etc paraFoam configuration dictionaries:
defaultPatchTypes (patch wall);
Wildcards are supported, for example to specify that all patches loaded simply set
defaultPatchTypes to
defaultPatchTypes (".*");
The new default paraFoam configuration is in the files OpenFOAM-dev/etc/paraFoam
containing the entry
defaultFields (U p p_rgh T alpha.water alpha.air);
specifying the set of fields which are loaded by default if available. This
setting maybe overridden by providing additional paraFoam configuration files in
any of the OpenFOAM etc directories searched, listed using
foamEtcFile -list
e.g.
~/.OpenFOAM/dev
~/.OpenFOAM
~/OpenFOAM/site/dev
~/OpenFOAM/site
~/OpenFOAM/OpenFOAM-dev/etc
The new configurable set of default fields loaded replaces the original hard-coded default of
"p" and "U" and is much more convenient for current OpenFOAM usage.
A wavePressure boundary condition has been added, and the Airy-type wave
models have been extended to generate the unsteady pressure field. This
provides another option for specifying wave motion at a boundary.
If a waveVelocity condition is used in isolation, then any outlet flow
will be extrapolated and scaled to match the required flow rate. This is
similar to how a flowRateOutletVelocity condition works.
0/U:
<patchName>
{
type waveVelocity;
// wave parameters ...
}
0/p_rgh:
<patchName>
{
type fixedFluxPressure;
}
If a waveVelocity is used in conjunction with the new wavePressure
condition, then one will set the value and the other the gradient, as
appropriate for the direction of the flow.
0/U:
<patchName>
{
type waveVelocity;
// wave parameters ...
p p_rgh;
}
0/p_rgh:
<patchName>
{
type wavePressure;
}
This new pressure-velocity formulation is less stable, but generates
more accurate waveforms on patches where the velocity reverses. It is
also necessary for sub-surface cases where fixing the velocity around
the entire domain generates a continuity error.
This work was supported by Alice Gillespie, on behalf of M3 Wave
Removed templating from integration schemes, improved the name
convention, and optimised the utilisation so that the virtual call is
only made once per integration in the KinematicParcel and the
ThermoParcel.
The integration of force and heat transfer onto the particle is
facilitated by a run-time-selectable integration scheme. These schemes
were written to generate the value at the end of an intregration step
and also an average value over the step from which the total transfer
was computed.
The average value in the Euler scheme was implemented incorrectly, which
resulted in the momentum and heat transfer processes being
non-conservative. Implementing the average correctly, however, would
have inteoduced a number of trancendental functions which would have
negated the purpose of the Euler scheme as the cheap and stable option.
The schemes have been rewritten to generate changes over the step,
rather than the final value. This change is then used to calculate the
transfers. Regardless of the scheme, this formulation is guaranteed to
be conservative, and the Euler scheme remains computationally
inexpensive.
This change was made with help from Timo Niemi, VTT
This resolves bug report https://bugs.openfoam.org/view.php?id=2666
The doc/Doxygen/Allwmake script can now be given directories as
arguments, which will be built instead of the usual src/ and
applications/ directories. This allows testing the documentation of a
limited set of files without building everything.
The outer doc/Allwmake script has also been deleted.
XiEngineFoam is a premixed/partially-premixed combustion engine solver which
exclusively uses the Xi flamelet combustion model.
engineFoam is a general engine solver for inhomogeneous combustion with or
without spray supporting run-time selection of the chemistry-based combustion
model.
Standard crank-connecting rod and the new free-piston kinematics motion options
are provides, others can easily be added.
Contributed by Francesco Contino and Nicolas Bourgeois, BURN Research Group.
The 4.x tracking enforces reduced dimensionality on the parcels by
moving them to the centre of the mesh at the start of each track,
without considering the topology. This can leave the parcel outside it's
associated tetrahedron.
The barycentric algorithm isn't tolerant to incorrect topology, so
instead of changing position, it was written to track to the mesh
centre. This worked, but effectively doubled the number of tracking
calls. This additional cost has now been removed by absorbing the
constraint displacement into the existing motion track, so that the same
number of tracking steps are performed as before.
Partially resolves bug report https://bugs.openfoam.org/view.php?id=2688
The new optional switch 'writeCyclicMatch' can be set to 'true' to enable the writing of
the cyclic match OBJ files; defaults to 'false'.
Patch contributed by Bruno Santos
Resolves patch request https://bugs.openfoam.org/view.php?id=2685
The splash kinetic energy has been changed to depend upon the velocity
of the parcel normal to the wall, rather than the absolute velocity, in
accordance with the original reference.
This patch was contributed by Stefan Hildenbrand at Pfinder
Resolves bug report https://bugs.openfoam.org/view.php?id=2682
Interpolated continuous phase data is only needed during a track and
therefore shouldn't be stored on the parcel. The continuous velocity,
density and viscosity have been moved from the kinematic parcel to the
kinematic parcel tracking data. This reduces the memory usage of the
kinematic layer by about one third. The thermo and reacting layers still
require the same treatment.
A lot of methods were taking argument data which could be referenced or
generated from the parcel class at little or no additional cost. This
was confusing and generated the possibility of inconsistent data states.
Tracking data classes are no longer templated on the derived cloud type.
The advantage of this is that they can now be passed to sub models. This
should allow continuous phase data to be removed from the parcel
classes. The disadvantage is that every function which once took a
templated TrackData argument now needs an additional TrackCloudType
argument in order to perform the necessary down-casting.
The combined solver includes the most advanced and general functionality from
each solver including:
Continuous phase
Lagrangian multiphase parcels
Optional film
Continuous and Lagrangian phase reactions
Radiation
Strong buoyancy force support by solving for p_rgh
The reactingParcelFoam and reactingParcelFilmFoam tutorials have been combined
and updated.
and the continuous-phase simulation type
For LTS and steady-state simulations the transient option does not need to be
provided as only steady-state tracking is appropriate. For transient running
the Lagrangian tracking may be steady or transient.
The evolution of a KinematicParcel happens in three stages; (1) tracking
across the cell, (2) interaction with the face or patch that has been
hit, and (3) clculation and and update of parcel and cell properties.
The KinematicParcel used to evolve in this order, as steps 1 and 2 were
part of the same lower level method. This meant that the update stage
was done after interacting with the face, meaning the parcel was not in
the cell that had just been tracked through, or, by means of a patch
interaction, had been modified such that it was no longer representative
of the track through the cell.
With the separation of stages 1 and 2 in the base class, it is now
possible to do the update stage before interacting with the face (i.e.,
proceeding in the order 1, 3, 2). This makes the state consistent for
the updates, and avoids the issues described.
Patch contributed by Timo Niemi, VTT.
This resolves bug report https://bugs.openfoam.org/view.php?id=2282
Particle collisions with ACMI patches are now handled. The hit detects
whether the location is within the overlap or the coupled region and
recurses, calling the hit routine appropriate for the region.
The low level tracking methods are now more consistently named. There is
now a distinction between tracking to a face and hitting it. Function
object side effects have been moved out of the base layer and into the
parcels on which they are meaningful.
The TrackData::switchProcessor flag was not being set for some of the
tracking steps made by the more complicated parcels. In the case that a
parcel starts the step already on a processor boundary, this sometimes
lead to the particle being transferred back and forth indefinitely. The
flag is now explicitly set in all cases.
@ -46,15 +47,15 @@ int main(int argc, char *argv[])
{
#include"postProcess.H"
#include"setRootCase.H"
#include"setRootCaseLists.H"
#include"createTime.H"
#include"createMesh.H"
#include"createControl.H"
#include"createTimeControls.H"
#include"initContinuityErrs.H"
#include"createFields.H"
#include"createFieldRefs.H"
#include"createFvOptions.H"
#include"createRhoUfIfPresent.H"
#include"createTimeControls.H"
turbulence->validate();
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.