- bin/tools/create-mpi-config to query/write values for system openmpi.
In some cases this can be used to avoid an mpicc requirement at runtime.
- adjust openfoam session to latest version,
including -test-tutorial forwarding.
- adjust foamConfigurePaths to latest version
- removal of gperftools default config, as per develop
- the foamConfigurePaths script is quite simplistic and aggressive in
what it changes. This was particularly evident when using it to
change gcc/clang versions.
Restructured the corresponding compiler settings to define default
versions (eg, "default_gcc_version") that limits the scope of
changes performed by foamConfigurePaths and makes it easier to
understand if changing manually.
- indexing error in the output of values resulted in uniform output in
most cases.
- allocation error for on-the-fly triangulation
ENH: changed decomposed storage from DynamicList to plain faceList for
clearer allocation control and better overhead
ENH: downgrade error on type-mismatch to a warning
- Ensight data files generated by OpenFOAM will start with the name of
the data type (Eg, "scalar", "vector" etc), but this convention may
fail for data files that have been generated elsewhere.
- foamExec was removed as part of commit f308aa6174554096 but
overlooked the fact that it is partly still needed by foamJob.
When running in parallel, it is used to source the etc/bashrc env.
Reinstated a stripped down form, which has been relocated to
bin/tools directory (it should not be directly called by the user).
The previous version switching functionality has nonetheless be
dropped since it only worked only when a rigid naming convention for
OpenFOAM installations was followed.
ENH: add foamJob log=, -log-app, -no-log options, improved coding quality
- synchronization, reduction only makes sense on processor-coupled
patches. Since cyclic baffles are within a single processor domain,
they are not reduced. So need to skip the sanity test for these.
- the use of 'paraview --version' can be fail if the build host
doesn't have the necessary graphics. For this case, try to obtain
the ParaView API number from the associated include directory.
- the read offset missed the tag_ member entirely and thus the entire
particle information would be corrupt (incorrectly interpreted) as
well as potential violation of adjacent (trailing) memory locations.
- used fallback of 0 instead of the results time.
This discrepancy caused the case file to have two timesets that
only differed by the first (incorrect) entry.
- when running in serial but within a processor directory,
argList::globalPath() is to be used instead of Time.globalPath()
For other cases there is no difference.
- with -mcpu=native for automatic detection and -armpl for linking in
the performance libraries
STYLE: relocate -mcpu into compiler instead of compiler-flags (#1225)
pointNormals calculation gets triggered through processorfvPatches
so on processors that don't have these bypass this. This leads
to the global reduction hanging.
- in addition to managing different vendors and versions, it may also
be necessary or desirable to have a particular variant
(eg, profiling, release, etc).
Devise a new meaningful name for the variant and create a
corresponding wmake rule.
Eg, SYSTEMOPENMPI-profiling with a corresponding
"wmake/rules/linux64Gcc/mplibSYSTEMOPENMPI-profiling" file
that has suitable content for your system.
CONFIG: intel-mpi use intel64/ paths only for config and wmake rules (#1153)
- previously adjusted the config files, but missed the changes
required for the wmake rules too.
Now simply migrate to using "intel64/{include,bin,lib}"
instead of the older naming "{include,bin,lib}64"
These changes work since at least intel-mpi 2015 (5.x), but possibly
earlier as well
- was WM_PROJECT_API in the environment and FOAM_API in dictionaries.
Make these both consistently FOAM_API.
This is a non-breaking change, since the value of WM_PROJECT_API
(added in 1812) and/or FOAM_API is purely informative.
For the current correct values, always use
* foamEtcFile -show-api
* wmakeBuildInfo -show-api
- If using a non-clang compiler suite (gcc, intel, etc) the additional
lbraries required for mesa with llvm pipelines may not be found.
Provide a mesa_llvm configuration with in the 'vtk' config file.
Can use the usual types of settings
* mesa_llvm=llvm-4.0.1
* mesa_llvm=none
* mesa_llvm=system
- looks slightly messier without associative arrays, but improves
portability. Should now also work with dash.
STYLE: support wmakeBuildInfo -cmp and -check options as equivalent
Averages columns of cells for layered meshes.
For each patch face, calculates the average value of all cells attached in
the patch face normal direction, and then pushes the average value back
to all cells in the column.
Useful for channel-like cases where we want to average fields in the
spanwise direction.
Example of function object specification:
columnAverage1
{
type columnAverage;
libs ("libfieldFunctionObjects.so");
...
patches (front side);
fields (U p);
}
Where the entries comprise:
\table
Property | Description | Required | Default value
type | type name: fieldMinMax | yes |
patches | list of patches to collapse onto | yes |
fields | list of fields to process | yes |
\endtable
- this corresponds to 'never match', which may be useful in combination
with -constant selection.
Eg,
surfaceMeshTriangulate -constant -time none
selects only the constant entry and suppresses any automatic time loop
STYLE: adjust help for the standard -times option
- indicate that times can be comma or space separated, since this is
otherwise not apparent. Don't mention semicolon separators in the help
since that just adds even more clutter.
- support .vtp format for geometry, surface, line, cloud.
- use native reader for handling vtk, vtp, obj, stl surface files.
For other formats, use the MeshedSurface (the surfMesh lib) to
handle reading and Foam::vtk::Tools::Patch to handle the
conversion to vtkPolyData. This combination is more memory efficient.
- update tutorial case to include vtp surface geometry
- note that it does not actually triangulate unless necessary, should
probably receive a new name.
- use newer constructs for handling processor/non-processor patch
selection etc.
- for quantities such as face area/normals etc, it can be useful to
calculate directly and avoid the overhead of caching all the values.
STYLE: comments, use HashTable lookup() method in whichPoint()
- this allows more use of the runTimePostProcessing functionObject
that will fail more gracefully if the proper version could not be
built.
The dummy functionObject simply emits a message that it is not available.
- this is identical to either of these solutions:
* getEnv("FOAM_CASE")
* stringOps::expand("<case>")
but with a closer resemblance to argList or Time globalPath(),
which makes the intent clearer.
Avoids using raw strings in the caller, which improves compile-time checks.
Used in situations where a class has no derivation path or other
access to a time registry or command args.
- provide relativePath() for argList and for Time.
These are relative to the case globalPath().
Eg,
Info<< "output: " << runTime.relativePath(outputFile) << nl;
- partial solution for issue #1091
This generates file properties that are case-relative,
Eg,
plane0
{
p
{
file "<case>/postProcessing/plane0/1/p_plane0.vtk";
}
U
{
file "<case>/postProcessing/plane0/1/U_plane0.vtk";
}
}
This allows the case to be moved elsewhere and still find its files.
This functionality was previously added for vtkCloud, but now also
applies to streamLine, sampledSets and sampledSurfaces
- it is sufficient to provide the total number of times that findBinary()
failed instead of flooding the screen with messages
Full verbose warnings still emitted when debugging is on.
- now use findEtcEntry() instead to handle file or directory.
Added findEtcEntries(), which provides provides a common code basis
for findEtcDirs(), findEtcFiles() ...
- this simplifies use of a unified test for directory or file.
fileName::Type what = myfile.type(true, true);
if (what == FILE) ...
if (what == DIRECTORY) ...
- Use distinct bit values for fileName::Type, for possible use in
the future.
- related to issue #1121, since we need a more flexible way of
expanding file or directory.
An alternative would be to add checkGzip to Foam::exists() and
Foam::type() functions, but that would make the code there more
confusing and in the fileHandler classes.
- for some special cases we wish to mark command-line arguments as
being optional, in order to do our own treatment. For example,
when an arbitrary number of arguments should be allowed.
Now tag this situation with argList::noMandatoryArgs().
The argList::argsMandatory() query can then be used in any further
logic, including the standard default argument checking.
- with the new default check, can consolidate the special-purpose
"setRootCaseNonMandatoryArgs.H"
into the regular
"setRootCase.H"
- revert to a simple "setRootCase.H" and move all the listing related
bits to a "setRootCaseLists.H" file. This leaves the information
available for solvers, or whoever else wishes, without being
introduced everywhere.
- add include guards and scoping to the listing files and rename to
something less generic.
listOptions.H -> setRootCaseListOptions.H
listOutput.H -> setRootCaseListOutput.H
- Now also responds to the contents of the trigger file,
processing action= contents similar to used with external coupling.
Previously it only handled an action that was defined in the
dictionary. With this update, the user can chose a diferent action
simply by echoing the appropriate action string into the trigger
file.
- similar to the foamEtcFile script -mode=... option, the specific
search location (user/group/other) can now also specified for
string expansions and as a numerical value for etcFile()
For example, if searching for group or other (project) controlDict,
but not wishing to see the user controlDict:
1. foamEtcFile -mode=go controlDict
2. fileName dictFile("<etc:go>/controlDict");
dictFile.expand();
3. etcFile(controlDict, false, 0077);
The default behaviour for searching all contexts is unchanged.
1. foamEtcFile controlDict
2. fileName dictFile("<etc>/controlDict");
dictFile.expand();
3. etcFile(controlDict);
- the local third-party headers are to be searched before any MPI
include directories. This stops the situation where an mpi-specific
version of ptscotch.h is installed into the MPI directories.
This "system" version may well have a different SCOTCH_Num size
(32 bit vs 64 bit) from the third-party library etc.
- change previous default (convert all faceZones unless -noFaceZones
specified) with the default behaviour to only convert face zones on
request.
- uses the '-faceZones' option as per foamToEnsight
- the result of lsof, which is used in the etc/cshrc to locate the
installation, may contain trailing information about host and mount
point.
There is also a moderate concern with people sourcing the
file indirectly with their own version in the same directory.
For example, a 'etc/cshrc-site' that actually sources 'etc/cshrc'.
This leads to multiple matches in the lsof output, so we only take
the first one, stop there and hope they didn't do something even
trickier.
- the counterpart to floatVector, doubleTensor, which can be useful
for connecting to programs that always expect double precision for
the arguments, when using single-precision for OpenFOAM itself.
Eg,
doubleVector pos = ...;
vtkcamera->SetPosition(pos.v_);
- prefer this to using the OPENFOAM define since this improves the
internal consistency with the build information.
The API information could change between builds without the
etcFiles.C being recompiled whereas the value of
Foam::foamVersion::api is force updated during the build (triggers
recompilation of globals.Cver)
Reports the min|max|average AMI weights to text file and optionally
writes VTK surfaces of the sum of the weights, and mask field for
ACMI patches.
Example usage:
AMIWeights
{
type AMIWeights;
libs ("libfieldFunctionObjects.so");
writeControl writeTime;
writeFields yes;
}
Reference:
Comte-Bellot, G., and Corrsin, S., "Simple Eulerian Time Correlation of
Full- and Narrow-Band Velocity Signals in Grid-Generated, 'Isotropic'
Turbulence," Journal of Fluid Mechanics, Vol. 48, No. 2, 1971,
pp. 273–337.
- now placed under postProcessing/checkMesh and postProcessing/checkAMI,
respectively.
Output files are now also tagged with the id of the patch, in case
there are multiple AMI patches in use.
- the problem occurred when running the writers in a parallel solver
or utility but requesting output on the master only.
Adjusted the logic to avoid globalIndex for these cases.
Previously the if (parallel_) checks were happening later, after the
globalIndex had already been created.
- use cellCentres() instead of volField equivalent for vtk conversion
- make looping variables more consistent
- centralize the transcription of OpenFOAM -> vtk tuples
The freestreamFvPatchField previously employed a fixed value when supplying
the inlet values. This commit extends the BC so that users can use another
patch to supply the values via the new freestreamBC entry, e.g. to set the
velocity to an atmospheric boundary layer profile:
inlet
{
type freestream;
freestreamBC
{
type atmBoundaryLayerInletVelocity;
flowDir (1 0 0);
zDir (0 0 1);
Uref 20;
Zref 20;
z0 uniform 0.1;
zGround uniform 935;
}
}
The earlier specification is also maintained for backwards compatibility, e.g.
inlet
{
type freestream;
freestreamValue uniform (300 0 0);
}
- provide default WM_DIR if not already set, to improve robustness if a
reduced environment is used
- add etc/ to WM_PROJECT_SITE search. This makes the site directory
structure consistent with the OpenFOAM structure.
Eg,
WM_PROJECT_SITE/etc/..
WM_PROJECT_SITE/bin/..
WM_PROJECT_SITE/platforms/..
- Don't set/export WM_OSTYPE. The default is POSIX and is properly
defaulted throughout, including in CMakeLists-OpenFOAM.txt (also for
Catalyst)
- Use the OPENFOAM define (eg, 1806, 1812), which normally corresponds
to a major release, to define an API level. This remains consistent
within a release cycle and means that it is possible to manage
several sub-versions and continue to have a consistent lookup.
The current API value is updated automatically during the build
and cached as meta data for later use, even when the wmake/ directory
is missing or OpenFOAM has not yet be initialized.
The version information reported on program start or with -help
usage adjusted to reflect this. The build tag from git now also
carries the date as being more meaningful to trace than a hash
value.
- Update etc/bashrc and etc/cshrc to obtain the project directory
directly instead of via its prefix directory. The value obtained
corresponds to an absolute path, from which the prefix directory
can be obtained.
The combination of these changes removes the reliance on any
particular directory naming convention.
For example,
With an 1812 version (API level):
WM_PROJECT_VERSION=myVersion
installed as /some/path/somewhere/openfoam-mySandbox
This makes the -prefix, -foamInstall, -projectVersion, -version
values of foamEtcFiles, and similar entries for foamConfigurePaths
superfluous.
WM_PROJECT_INST_DIR is no longer required or used
ENH: improve handling and discovery of ThirdParty
- improve the flexibility and reusability of ThirdParty packs to cover
various standard use cases:
1. Unpacking initial release tar files with two parallel directories
- OpenFOAM-v1812/
- ThirdParty-v1812/
2. With an adjusted OpenFOAM directory name, for whatever reason
- OpenFOAM-v1812-myCustom/
- openfoam-1812-other-info/
3. Operating with/without ThirdParty directory
To handle these use cases, the following discovery is used.
Note PROJECT = the OpenFOAM directory `$WM_PROJECT_DIR`
PREFIX = the parent directory
VERSION = `$WM_PROJECT_VERSION`
API = `$WM_PROJECT_API`, as per `foamEtcFiles -show-api`
0. PROJECT/ThirdParty
- for single-directory installations
1. PREFIX/ThirdParty-VERSION
- this corresponds to the traditional approach
2. PREFIX/ThirdParty-vAPI
- allows for an updated value of VERSION (eg, v1812-myCustom)
without requiring a renamed ThirdParty. The API value
would still be '1812' and the original ThirdParty-v1812/
would be found.
3. PREFIX/ThirdParty-API
- this is the same as the previous example, but using an unadorned
API value. This also makes sense if the chosen version name also
uses the unadorned API value in its naming
(eg, 1812-patch190131, 1812.19W03)
4. PREFIX/ThirdParty-common
- permits maximum reuse for various versions, but only for
experienced user who are aware of potential version
incompatibilities
Directory existence is checked as is the presence of an Allwmake file
or a platforms/ directory. This reduces the potential of false positive
matches and limits the selection to directories that are either
with sources (has the Allwmake file), or pre-compiled binaries (has
the platforms/ directory).
If none of the explored directories are found to be suitable,
it reverts to using a PROJECT/ThirdParty dummy location since
this is within the project source tree and can be trusted to
have no negative side-effects.
ENH: add csh support to foamConfigurePaths
- this removes the previously experienced inconsistence in config file
contents.
REMOVED: foamExec
- was previously used when switching versions and before the
bashrc/cshrc discovery logic was added. It is now obsolete.
- Uses the user-specified value for outputTemperature:
{
type externalCoupledTemperature;
outputTemperture fluid; // or wall;
}
Otherwises uses 'wall' as a default (for compatibility) and emits a
warning.
The T.out header now reflects the type of output. Eg,
# Values: area Tfluid qDot htc
- tutorials based on squareBend used Default_Boundary_Region explicitly
defined since they predated the defaultPatch renaming (2008).
The name 'Default_Boundary_Region' was for convenience as the default
name when converting to PROSTAR or CCM formation, but can now be
changed to something more generic.
- define wall boundary conditions for squareBend using a general regex
to allow future splitting of wall types by name.
- check if the first argument corresponds to an OpenFOAM value for
'true' (as per Switch).
True == 't', 'y', 'true', 'yes', 'on'. Everything else is not true.
- when the first argument is '-dict', it initializes the value
with a query via foamDictionary.
Eg,
isTrue -dict mydict -entry parallel
==> value=$(foamDictionary mydict -entry parallel -value)
isTrue $value
a missing entry is silently treated as false.
ENH: add getNumberOfPatchFaces function in RunFunctions
- simple extraction of nFaces from boundary file for given patch/region
- append the commit hash value with the commit date when creating
the build string information and drop the version prefix.
This provides an immediate overview of when the code was last
changed. The prefixed version information can be dropped from
the build string, since it is readily available in other forms.
- was PREFIX/site, now PROJECT/site
This avoids several issues when installing OpenFOAM in clusters
without an intermediate OpenFOAM-specific installation prefix.
The 'site' directory may have a reserved meaning in these situations
and it is undesirable to 'leak' upwards into the parent directory to
look for configuration files.
Placing the default within the project directory avoids this.
Alternative locations can be given via the WM_PROJECT_SITE variable.
- removed reliance on ParaView_INCLUDE_DIR variable for conveying the
major.minor version information when compiling. This can be somewhat
fragile and also adds variable that is an unnecessary when running
(only used when compiling).
Instead use `have_pvplugin_support` function in paraviewFunctions
wmake script to determine the maj.min from the PV_PLUGIN_PATH
since we have already defined the output path there with paraview
maj.min numbering.
Can now build with paraview from the operating system,
provided that it has develop headers available.
ParaView_VERSION=system
In the etc/config.sh/paraview setup, the maj.min is taken from
the corresponding `paraview --version` output and used when
defining the PV_PLUGIN_PATH.
During the build, the include path taken from `paraview-config`
for a system installation, from the guess installation root
of the paraview binary, or ParaView_DIR otherwise.
NB: using a system ParaView for building runTimePostProcessing is unsupported.
- these types of builds appear to have various library resolution issues
(eg, libexpat not being loaded). Additionally, the build logic does
not yet cover this type of use case.
- cfindObject() for const pointer access.
- getObject() for mutable non-const pointer access, similar to the
objectRegistry::getObjectPtr()
- cfindObject(), findObject(), getObject() with template type access
to also check the headerClassName.
For example,
cfindObject("U") -> good
cfindObject<volVectorField>("U") -> good
cfindObject<volScalarField>("U") -> nullptr
This allows inversion of looping logic.
1) Obtain the names for a particular Type
for (const word& objName : objs.sortedNames<Type>())
{
const IOobject* io = objs[objName];
...
}
2) Use previously obtained names and apply to a particular Type
for (const word& objName : someListOfNames)
{
const IOobject* io = objs.cfindObject<Type>(objName);
if (io)
{
...
}
}
- if FOAM_EXT_LIBBIN is unset and some scripts set this to /usr/lib*
as a fallback (eg, to avoid an undefined value) this will cause a
system library to be found before appropriate *_ARCH_PATH entry.
This was noticed during a scotch compilation without third-party:
resulting in the system library (/usr/lib64/libscotch.so) to be found
instead of the SCOTCH_ARCH_PATH location
(/usr/lib64/mpi/gcc/openmpi/lib64/).
Simply changing the search order doesn't work for use, since we wish
to retain a preference for any dynamic libraries discovered in a
real FOAM_EXT_LIBBIN.
Circumvent these issues by only taking libraries from
FOAM_EXT_LIBBIN if it also points to a location within ThirdParty.
- can now things like ref(), boundaryFieldRef(), primitiveFieldRef()
with an optional argument that avoids triggering any update events
Instead of
Field<Type>& iF = const_cast<Field<Type>&>(fld.primitiveField());
can now write
Field<Type>& iF = fld.primitiveFieldRef(false);
or simply
auto& iF = fld.primitiveFieldRef(false);
- can be used, for example, to visualize all wall cells - for quality
or other purposes - without requiring an intermediate faceSet for
the selection. Request arising from pending merge !213.
- now supports a parcel selection mechanism like vtkCloud,
giving the ability to select a subset of parcels.
For example, a given stride, or removal of parcels with a small
diameter.
Eg,
dataCloud output Time: 3.2
Applying parcel filtering to 994 parcels
- add stride 4
- subtract field U : (less 0.2)
After filtering using 214/994 parcels
- add output precision control for dataCloud
- vtkWrite with moving mesh was not updated the subsets properly,
which caused it to crash.
- foamToVTK -overwrite ignored for single region cases,
was working for multi-region cases
- minor documentation changes
Description
Calculates the energy spectrum for a structured IJK mesh
Usage
Example of function object specification:
energySpectrum1
{
type energySpectrum;
libs ("libfieldFunctionObjects.so");
}
Where the entries comprise:
\table
Property | Description | Required | Default value
type | type name: energySpectrum | yes |
log | write info to standard output | no | yes
\endtable
Output data is written to the file \<timeDir\>/energySpectrum.dat
- Added quoting to handle spaces in environment values in commit 50852b33
(#1007, #1008). However, quoting is only needed for eval mode.
In regular mode, quoting should not be part of the output, instead it
should be done on the caller side.
- provide edit for adjusting the ThirdParty and fallback site variables.
This is useful when packaging into a single directory, and possibly
without any ThirdParty dependencies.
- support '-prefix' (similar to auotconfig) as an alternative to
'-foamInstall'. Use this prefix to set the prefix directly.
Bypasses and disables the bash sourcing magic.
- Within strings it is preferable to use the "<etc>" instead.
Most use cases for the old "~OpenFOAM" expansion have been obsoleted
by the #includeEtc directive.
- use std::string instead of c-string for the string constants
- centralize some definitions of resources into foamVersion.H
Now expose some of the hard-coded values used in foamEtcFiles()
so that they can be known or even overridden as required.
Relocate to src/OpenFOAM/include as a constant location.
- uses wmake, without OpenFOAM libraries.
The application and libray serve as a minimal test case for wmake,
but can also be used to generate a minimal library/executable pair
target for testing of packaging etc.
- For compatibility, access to the old global names is provided via
macros
#define FOAMversion foamVersion::version
#define FOAMbuild foamVersion::build
#define FOAMbuildArch foamVersion::buildArch
- this isolation makes it easier to provide additional scoped methods
for dealing with version related information. Eg, printBuildInfo()
- foamVersion.H now includes stdFoam.H for consistent use
of compatibility compiler defines.
- move forward declaration of Detail, Module namespaces to stdFoam.H
- doxygen documentation of Foam namespace in stdFoam.H
- generalize output text wrapping, use for usage notes
- add -help-man option for generating manpage content for any OpenFOAM
application or solver.
bin/tools/foamCreateManpage as helper
- The changes in foamCleanPath introduced for issues (#1007, #1008)
include quoted output of the cleaned environment variable.
When used in foamCreateModuleInclude, the quotes make their way
into the final environment. Avoid this by using the -sh-env
eval format instead.
- add environment extraction of MANPATH changes
- 'unfriend' operators on dimensionSet, since they operate without
requiring access to non-public members.
- add missing invTransform() function for dimensionSet.
- make inv(const dimensionSet&) available as
operator~(const dimensionSet&), which can be used instead
of (dimless/ds).
- writing of dictionary entry with the name of the dimensionedType
suppressed if it is identical to the keyword.
This corresponds to the input requirements.
- deprecate dimensionedType constructors using an Istream in favour of
versions accepting a keyword and a dictionary.
Dictionary entries are almost the exclusive means of read
constructing a dimensionedType. By construct from the dictionary
entry instead of doing a lookup() first, we can detect possible
input errors such as too many tokens as a result of a input syntax
error.
Constructing a dimensionedType from a dictionary entry now has
two forms.
1. dimensionedType(key, dims, dict);
This is the constructor that will normally be used.
It accepts entries with optional leading names and/or
dimensions. If the entry contains dimensions, they are
verified against the expected dimensions and an IOError is
raised if they do not correspond. On conclusion, checks the
token stream for any trailing rubbish.
2. dimensionedType(key, dict);
This constructor is used less frequently.
Similar to the previous description, except that it is initially
dimensionless. If entry contains dimensions, they are used
without further verification. The constructor also includes a
token stream check.
This constructor is useful when the dimensions are entirely
defined from the dictionary input, but also when handling
transition code where the input dimensions are not obvious from
the source.
This constructor can also be handy when obtaining values from
a dictionary without needing to worry about the input dimensions.
For example,
Info<< "rho: " << dimensionedScalar("rho", dict).value() << nl;
This will accept a large range of inputs without hassle.
ENH: consistent handling of dimensionedType for inputs (#1083)
BUG: incorrect Omega dimensions (fixes#2084)
- use forwarding templates for the factory method
- avoid double use of dynamic_cast.
Don't need implicit use in isA<>, can use result directly
STYLE: updated iteration over HashTable of mesh objects
- was using coordinate-system and transform() which is the
local-to-global mapping, whereas it should be invTransform() which
is the global-to-local mapping
- this seems to be the only reliable means of obtaining the values.
Using typeName_() yields the wrong value.
Using the typeName causes initialization issues
(segfault when executing on some systems).
- support name filtering by class based on <Type> or predicates.
Eg,
objects.sortedNames<volScalarField>(namePattern);
vs objects.sortedNames(volScalarField::typeName, namePattern);
These can also be used directly for untyped name matching.
Eg,
objects.sortedNames<void>(namePattern);
Can also use a predicate:
objects.sortedNames(wordRe("vol.*Field"), namePattern);
objects.sortedNames
(
[](const word& clsName){ return clsName.startsWith("vol"); },
namePattern
);
- add IOobjectList::count() methods
- lookupClass<Type>() to use types instead of class variables.
- additional helpers for parallel: allNames(), checkNames()
- provide filterClasses() and filterObjects(), prune_0() method
forwarding to HashTable methods for easier access.
- in parameter form, check if it headerClassName() corresponds to the
specified class name
- in templated form, check if headerClassName() corresponds to the
Type:typeName value.
Specialization for <void> always returns true (ie, no checks)
- replace explicit use of word, wordRe, wordRes, wordHashSet as filters
with a MatchPredicate, since they all satisfy the requirements for
use a predicate. This change reduces code duplication, allows other
matcher types (eg, keyType) as well as lambda functions.
- add special treatment for a 'const char*' parameter
for lookupClass() and the now-deprecated single item lookup() method
to promote these parameters to 'word'.
- naming similar to objectRegistry, with unambiguous resolution.
The lookup() methods have different return types depending on the
calling parameter.
STYLE: use IOobjectListTemplates.C for implementations
- previously included as local definition within IOobjectList.C,
but will be adding more templated methods soon.
- adjust parameters (eg, matchName instead of matcher) to show their
function
ENH: handle objectRegistry::names<void>(...)
- this is equivalent to no Type restriction, and can be used when
filtering names. Eg,
obr.names<void>(wordRe..);
- Start brief descriptions with 'Deprecated(YYYY-MM)' so that it is
readily visible in the short method description. Consistent date
format (YYYY-MM), placed immediately after the \deprecated tag.
commit 3f9c7bf411
commit 3cf177e759
====
ENH: add geometric decomposition constraint (issue #921)
- geometric decomposition constraints may be used to prevent the
decomposition of regions of the mesh.
The geometric constraint is applied according to the face centres,
which define the connectivity between cells.
Specified in decomposeParDict
constraints
{
geometric
{
type geometric;
geometry
{
box1
{
type box;
min (-10 -10 -10);
max (1 1 1);
}
ball1
{
type sphere;
origin (-2 -2 1);
radius 1;
}
}
}
}
ENH: add 'grow' option for geometric decomposition constraint (issue #921)
- the 'grow' option includes an additional check to include cell faces
for any cell that already has two or more of its faces "unblocked".
This could indicate a connection over a corner, but does not distinguish
between connectivity introduced by the constraint and the connectivity
defined by other constraints.
ENH: geometric decomposition constraint using topoSetFaceSource (issue #921)
- replaced use of searchableSurface with a more general and
more efficient topoSetFaceSource instead.
Since searchableSurface is also available as a topoSetFaceSource,
there is no loss in functionality, but using topoSetFaceSource allow
directly looping over the faces without creating of an additional
List of volumeTypes.
This fixes the static-initialisation order problem - fieldTypes.C
referes to labelIOField etc. which are after it in Make/files and
hence the link order.
- now takes a const UList<T> as input and returns a List<T>
instead of trying to use the same ListType for both.
This avoids previously encountered issues when a UList was passed in.
- add specialized bitSet handling within subset(), where we can benefit
from faster traversal of sparse selections and have a better estimate
of the final output size.
- local token shifting was missing when getting the next file chunk
(while in the middle of parsing that text).
As well as adding the correct shifting, also tag the local buffer
with nullptr when it is done. Be extra paranoid and check the
raw buffer range before passing off to std::string.
- Default format is now XML binary (base64) instead of legacy format.
The old -xml option is redundant and ignored.
The new -legacy option can be used to force legacy output instead.
- Polyhedral decomposition is now off by default (old -poly is ignored).
The option -poly-decomp forces decomposition of polyhedrals into
primitive shapes.
- reduced memory footprint by reading and converting fields
successively.
- Creation of symlinks to processor files is no longer required or
desired. The old -noLinks option is ignored.
- Ignore -useTimeName option. Always number according to timeIndex.
- align input parameters and some of the behaviour with vtkWrite
The output is now postProcessing/<name> for similar reasoning as
mentioned in #866 - better alignment with other function objects, no
data collision with foamToEnsight output.
- separate controls for internal and boundary meshes
- can restrict conversion based on zone names, enclosing volumes,
bounding box.
- parallel output.
The output is now postProcessing/<name> for similar reasoning as
mentioned in #866 - better alignment with other function objects, no
collision with foamToVTK output.
- align the input parameters with those of vtkCloud so that we can
specify the ASCII precision and the padding width for the output
file names as well.
- emit TimeValue field, support file series generation
- support internal or boundary meshes, combining the result into a vtm
file.
- can restrict conversion based on zone names, enclosing volumes,
bounding box
- handle tmp fields in interpolate methods
- special method interpolateInternal() for creating a volume field
with zero-gradient treatment for patches from an internal field.
This method was previously also called interpolate(), but that
masked the ability to subset the internal field only.
Ensight output needs the volume field:
uses interpolateInternal().
VTK output has separate handling of internal and patch fields:
uses interpolate().
ENH: added fvMeshSubset mesh() method for baseMesh or subMesh.
- simplies coding when the fvMeshSubset may or may not be in active use.
ENH: update foamToEnsight to use newer methods in wrapped form
- static interpolate functions with renaming for manual use with
fvMeshSubset (when fvMeshSubsetProxy may be too limiting in
functionality)
- helps reduce clutter in the topoSetDict files.
Caveats when using this.
The older specification styles using "name" will conflict with the
set name. Eg,
{
name f0
type faceSet;
action add;
source patchToFace;
sourceInfo
{
name inlet;
}
}
would flattened to the following
{
name f0
type faceSet;
action add;
source patchToFace;
name inlet;
}
which overwrites the "name" used for the faceSet.
The solution is to use the updated syntax:
{
name f0
type faceSet;
action add;
source patchToFace;
patch inlet;
}
- faceBitSet, pointBitSet and faceBoolSet (similar to cellBitSet)
* allows topo sources in a wider variety of places.
* With copy or move constructors.
- cylinderToPoint, searchableSurfaceToFace, searchableSurfaceToPoint,
sphereToFace, sphereToPoint sources
- optional innerRadius for sphere and cylinder sources to treat as hollow.
- support "sets" as well as "set" for cellToCell, faceToFace... sources.
* convenience and avoids writing the set during processing.
- now applicable to labelLists.
Note:
in some situations it will be more efficient to use
Foam::identity() directly. Eg,
globalIndex globalCells(mesh.nCells());
...
labelList cellIds
(
identity(globalCells.localSize(), globalCells.localStart())
);
- previously simply read files until the input stream went bad and no
more lines could be read. With the more stringent checking of
values read (commit 0ce7e364a4) this approach causes problems.
Use the underlying tokenizer instead to decide about termination.
- for space-savings the VTK fields are normally written as 'float'
rather than double. When a double field contains very large values,
these can result in a overflow when converted to float.
Now trap these with the appropriate numeric limits.
No warning when these values are clipped: it should be readily
apparent from the output.
ENH: handle symmTensor component swapping directly on VTK output.
- use VTK output routines in vtkSurfaceWriter to benefit from the
above changes
- a failed attempt to read a value (eg, word, label, scalar) from a
stream now always provokes a FatalIOError.
This helps avoid some difficult to trace input errors.
- old 'DELETE' enum was easily confused with 'REMOVE', which removes
the set, not the elements from the set.
- provide corresponding subtractSet() method
STYLE: HashSet set/unset instead of insert/erase methods in topoSetSource
- simplifies switching to/from bitSet storage
- make hasFaceId a top-level virtual method and remove keepIds
equivalent from sampledTriSurfaceMesh. This makes the property
available without casting.
- New sampling type 'none'.
Can be used to temporarily disable a sampling surface definition,
or to provide boilerplate for overwriting later.
- as part of the cleanup of dictionary access methods (c6520033c9)
made the dictionary class single inheritance from IDLList<entry>.
This eliminates any ambiguities for iterators and allows
for simple use of range-for looping.
Eg,
for (const entry& e : topDict))
{
Info<< "entry:" << e.keyword() << " is dict:" << e.isDict() << nl;
}
vs
forAllConstIter(dictionary, topDict, iter))
{
Info<< "entry:" << iter().keyword()
<< " is dict:" << iter().isDict() << nl;
}
- more dictionary-like methods, enforce keyType::LITERAL for all
lookups to avoid any spurious keyword matching.
- new readEntry, readIfPresent methods
- The get() method replaces the now deprecate lookup() method.
- Deprecate lookupOrFailsafe()
Failsafe behaviour is now an optional parameter for lookupOrDefault,
which makes it easier to tailor behaviour at runtime.
- output of the names is now always flatted without line-breaks.
Thus,
os << flatOutput(someEnumNames.names()) << nl;
os << someEnumNames << nl;
both generate the same output.
- Constructor now uses C-string (const char*) directly instead of
Foam::word in its initializer_list.
- Remove special enum + initializer_list constructor form since
it can create unbounded lookup indices.
- Removd old hasEnum, hasName forms that were provided during initial
transition from NamedEnum.
- Added static_assert on Enum contents to restrict to enum or
integral values. Should not likely be using this class to enumerate
other things since it internally uses an 'int' for its values.
Changed volumeType accordingly to enumerate on its type (enum),
not the class itself.
- this helps for many cases outlined in issue #1007, but can also be
useful when simply using symlinks for shorter or reorganized
directory structures.
Update of overRhoPimpleDyMFoam and overInterDyMFoam solvers.
Adding corresponding tutorials with best possible settings
The main effort was put on reducing pressure spikes as the
stencil change with hole cells on the background mesh.
- writes positions and a single field (eg, diameter) in plain ASCII files,
suitable for importing in a spreadsheet or manipulation with
scripting tools.
- code integrated from
https://develop.openfoam.com/Community/OpenFOAM-addOns
New name: findObject(), cfindObject()
Old name: lookupObjectPtr()
Return a const pointer or nullptr on failure.
New name: findObject()
Old name: --
Return a non-const pointer or nullptr on failure.
New name: getObjectPtr()
Old name: lookupObjectRefPtr()
Return a non-const pointer or nullptr on failure.
Can be called on a const object and it will perform a
const_cast.
- use these updated names and functionality in more places
NB: The older methods names are deprecated, but continue to be defined.
- these currently only with bool parameters, but the return value should
nonetheless always be a bool value:
andOp(), orOp(), lessOp(), lessEqOp(), greaterOp(), greaterEqOp()
- renamed the unused eqEqOp() to equalOp() for naming consistency with
the equal() global function.
ENH: equalOp() specialization for scalars
- function object version of the equal() function.
The default constructor uses the same tolerance (VSMALL),
but can also supply an alternative tolerance on construction.
Description
Calculates the spatial minimum and maximum extents of a field
The extents are derived from the bound box limits after identifying
the locations where field values exceed the user-supplied threshold
value.
Usage
Example of function object specification:
fieldExtents1
{
type fieldExtents;
libs ("libfieldFunctionObjects.so");
...
writeToFile yes;
log yes;
fields (alpha);
threshold 0.5;
patches ();
}
Where the entries comprise:
Property | Description | Required | Default
type | type name: fieldExtents | yes |
writeToFile | write extents data to file | no | yes
log | write extents data to standard output | no | yes
internalField | Process the internal field | no | yes
threshold | Field value to identify extents boundary | yes |
referencePosition | Reference position | no | (0 0 0)
fields | list of fields to process | yes |
patches | list of patches to process | no | <all>
Output data is written to the file \<timeDir\>/fieldExtents.dat
Note
For non-scalar fields, the magnitude of the field is employed and
compared to the threshold value.
- with the 'cwd' optimization switch it is possible to select the
preferred behaviour for the cwd() function.
A value of 0 causes cwd() to return the physical directory,
which is what getcwd() and `pwd -P` return.
Until now, this was always the standard behaviour.
With a value of 1, cwd() instead returns the logical directory,
which what $PWD contains and `pwd -L` returns.
If any of the sanity checks fail (eg, PWD points to something other
than ".", etc), a warning is emitted and the physical cwd() is
returned instead.
Apart from the optical difference in the output, this additional
control helps workaround file systems with whitespace or other
characters in the directory that normally cause OpenFOAM to balk.
Using a cleaner symlink elsewhere should skirt this issue.
Eg,
cd $HOME
ln -s "/mounted volume/user/workdir" workdir
cd workdir
# start working with OpenFOAM
- foamCleanPath now only splits the environment variable on ':', which
allows other directories with spaces or '(..)' etc to pass through
without major issue.
- The filter arguments are split on whitespace, colons or semi-colons.
- use keyType::option enum to consolidate searching options.
These enumeration names should be more intuitive to use
and improve code readability.
Eg, lookupEntry(key, keyType::REGEX);
vs lookupEntry(key, false, true);
or
Eg, lookupEntry(key, keyType::LITERAL_RECURSIVE);
vs lookupEntry(key, true, false);
- new findEntry(), findDict(), findScoped() methods with consolidated
search options for shorter naming and access names more closely
aligned with other components. Behave simliarly to the
methods lookupEntryPtr(), subDictPtr(), lookupScopedEntryPtr(),
respectively. Default search parameters consistent with lookupEntry().
Eg, const entry* e = dict.findEntry(key);
vs const entry* e = dict.lookupEntryPtr(key, false, true);
- added '*' and '->' dereference operators to dictionary searchers.
- use the dictionary 'get' methods instead of readScalar for
additional checking
Unchecked: readScalar(dict.lookup("key"));
Checked: dict.get<scalar>("key");
- In templated classes that also inherit from a dictionary, an additional
'template' keyword will be required. Eg,
this->coeffsDict().template get<scalar>("key");
For this common use case, the predefined getXXX shortcuts may be
useful. Eg,
this->coeffsDict().getScalar("key");
- not used by the ISstream parser, but suitable for other parsing
methods where true/false concept should be distinguishable from
integer values.
Only constructed via the token::boolean() static method, not
directly assignable.
This avoids any potential ambiguities with label.
- this also removes the '-newTimes' option cruft from appearing
everywhere. reconstructPar and redistributePar are unaffected by this
since they define their own -newTimes option independently.
- same as !isPattern(), but can be more readable.
- add wordRe enum state 'UNKNOWN', which has the identical value as
'DETECT' but used for a return value.
- makes an easier overview of the rotation matrix coefficients
(issue #863).
Provided as a distinct commit for easier examination of the lines changed.
Previously the coordinate system functionality was split between
coordinateSystem and coordinateRotation. The coordinateRotation stored
the rotation tensor and handled all tensor transformations.
The functionality has now been revised and consolidated into the
coordinateSystem classes. The sole purpose of coordinateRotation
is now just to provide a selectable mechanism of how to define the
rotation tensor (eg, axis-angle, euler angles, local axes) for user
input, but after providing the appropriate rotation tensor it has
no further influence on the transformations.
--
The coordinateSystem class now contains an origin and a base rotation
tensor directly and various transformation methods.
- The origin represents the "shift" for a local coordinate system.
- The base rotation tensor represents the "tilt" or orientation
of the local coordinate system in general (eg, for mapping
positions), but may require position-dependent tensors when
transforming vectors and tensors.
For some coordinate systems (currently the cylindrical coordinate system),
the rotation tensor required for rotating a vector or tensor is
position-dependent.
The new coordinateSystem and its derivates (cartesian, cylindrical,
indirect) now provide a uniform() method to define if the rotation
tensor is position dependent/independent.
The coordinateSystem transform and invTransform methods are now
available in two-parameter forms for obtaining position-dependent
rotation tensors. Eg,
... = cs.transform(globalPt, someVector);
In some cases it can be useful to use query uniform() to avoid
storage of redundant values.
if (cs.uniform())
{
vector xx = cs.transform(someVector);
}
else
{
List<vector> xx = cs.transform(manyPoints, someVector);
}
Support transform/invTransform for common data types:
(scalar, vector, sphericalTensor, symmTensor, tensor).
====================
Breaking Changes
====================
- These changes to coordinate systems and rotations may represent
a breaking change for existing user coding.
- Relocating the rotation tensor into coordinateSystem itself means
that the coordinate system 'R()' method now returns the rotation
directly instead of the coordinateRotation. The method name 'R()'
was chosen for consistency with other low-level entities (eg,
quaternion).
The following changes will be needed in coding:
Old: tensor rot = cs.R().R();
New: tensor rot = cs.R();
Old: cs.R().transform(...);
New: cs.transform(...);
Accessing the runTime selectable coordinateRotation
has moved to the rotation() method:
Old: Info<< "Rotation input: " << cs.R() << nl;
New: Info<< "Rotation input: " << cs.rotation() << nl;
- Naming consistency changes may also cause code to break.
Old: transformVector()
New: transformPrincipal()
The old method name transformTensor() now simply becomes transform().
====================
New methods
====================
For operations requiring caching of the coordinate rotations, the
'R()' method can be used with multiple input points:
tensorField rots(cs.R(somePoints));
and later
Foam::transformList(rots, someVectors);
The rotation() method can also be used to change the rotation tensor
via a new coordinateRotation definition (issue #879).
The new methods transformPoint/invTransformPoint provide
transformations with an origin offset using Cartesian for both local
and global points. These can be used to determine the local position
based on the origin/rotation without interpreting it as a r-theta-z
value, for example.
================
Input format
================
- Streamline dictionary input requirements
* The default type is cartesian.
* The default rotation type is the commonly used axes rotation
specification (with e1/e2/3), which is assumed if the 'rotation'
sub-dictionary does not exist.
Example,
Compact specification:
coordinateSystem
{
origin (0 0 0);
e2 (0 1 0);
e3 (0.5 0 0.866025);
}
Full specification (also accepts the longer 'coordinateRotation'
sub-dictionary name):
coordinateSystem
{
type cartesian;
origin (0 0 0);
rotation
{
type axes;
e2 (0 1 0);
e3 (0.5 0 0.866025);
}
}
This simplifies the input for many cases.
- Additional rotation specification 'none' (an identity rotation):
coordinateSystem
{
origin (0 0 0);
rotation { type none; }
}
- Additional rotation specification 'axisAngle', which is similar
to the -rotate-angle option for transforming points (issue #660).
For some cases this can be more intuitive.
For example,
rotation
{
type axisAngle;
axis (0 1 0);
angle 30;
}
vs.
rotation
{
type axes;
e2 (0 1 0);
e3 (0.5 0 0.866025);
}
- shorter names (or older longer names) for the coordinate rotation
specification.
euler EulerRotation
starcd STARCDRotation
axes axesRotation
================
Coding Style
================
- use Foam::coordSystem namespace for categories of coordinate systems
(cartesian, cylindrical, indirect). This reduces potential name
clashes and makes a clearer declaration. Eg,
coordSystem::cartesian csys_;
The older names (eg, cartesianCS, etc) remain available via typedefs.
- added coordinateRotations namespace for better organization and
reduce potential name clashes.
This fix changes how the intersections loop ignores previously
intersected faces. It now marks them by their index so that subsequent
iterations ignore them.
Before this change, after an intersection was found the start point was
advanced by a small amount to move the past the intersection. The
problem with this was if multiple boundary faces or the end point were
in close proximity to the intersection then the move forward might span
them. This could lead to intersections being missed or counted multiple
times, in some cases indefinitely.
Based on a patch contributed by Mattijs Janssens
Resolves bug report https://bugs.openfoam.org/view.php?id=1147
- Can now retrieve or set a column/row of a tensor.
Either compile-time or run-time checks.
Get
t.col<1>(); t.col(1);
t.row<1>(); t.row(1);
Set
t.col<1>(vec); t.col(1,vec);
t.row<1>(vec); t.row(1,vec);
The templated versions are compile-time checked
t.col<3>();
t.col<3>(vec);
The parameter versions are run-time checked
t.col(3);
t.col(3,vec);
ENH: provide named access to tensor/tensor inner product as inner()
Helper function to calculate the current face area vs the area returned
from the current point locations. Useful for ACMI-type baffles where we
scale the face areas without moving points.
- nBoundaryFaces() is often used and is identical to
(nFaces() - nInternalFaces()).
- forward the mesh nInternalFaces() and nBoundaryFaces() to
polyBoundaryMesh as nFaces() and start() respectively,
for use when operating on a polyBoundaryMesh.
STYLE:
- use identity() function with starting offset when creating boundary maps.
labelList map
(
identity(mesh.nBoundaryFaces(), mesh.nInternalFaces())
);
vs.
labelList map(mesh.nBoundaryFaces());
forAll(map, i)
{
map[i] = mesh.nInternalFaces() + i;
}
- this provides internal consistency and allows direct use of the
coordinate angle with sin(), cos() functions.
It eliminates potential issues that could otherwise arise from
alternative user input.
Eg, in mixerFvMesh it would have previously been possible to specify
the coordinate system to use degrees or radians, but these units were
not checked when determining the tangential sweep positions.
NOTE: this may represent a breaking change if user coding has been
relying on cylindrical coordinate system in degrees.
Previously had 3 possibilities for handling exposed internal faces
1. use default "oldInternalFaces"
2. specify -patch, to use the specified (existing) patch
3. specify -patches, to use the geometrically closest patches
Now relaxed the restriction on -patch to allow specification of a new
(not yet existing) patch name. This improves flexibility, but won't
catch typing mistakes.
Harmonize behaviour of -patches and -patch. When -patches is used to
specify a single, non-regex patch name, it now behaves identically to
-patch. Since the getList handling for options already allows special
treatment for single parameter lists, the following will work
identically:
subsetMesh -patch patch0
subsetMesh -patches patch0
subsetMesh -patches '( patch0 )'
In the future it might be reasonable to fully combine the behaviour of
'-patch' and '-patches' and treat them as aliases for each other.
ENH: support subsetMesh on a cellZone.
- when the '-zone' option is specified, the command argument is treated
as the name (or names) of cellZones to be selected instead of as the
name of the cellSet.
The command argument can be a single word, regex, or list of
word/regex.
Eg,
subsetMesh -zone -patch mypatch mixer
subsetMesh -zone -patch mypatch '(mixer "moving.*" )'
STYLE: simplify set handling and other code cleanup in subsetMesh
Using: OpenFOAM-plus (see www.OpenFOAM.com)
Build: plus-7ab57cc5d014 (OPENFOAM=1807)
Arch: LSB;label=32;scalar=64
- This can be useful for development versions, or when the version
at build time uses some other naming scheme (#1010)
- 'signed' input parameter only mandatory for distance > 0.
A distance <= 0 is always signed and the input parameter is ignored.
- Use normal distance when distance == 0. This has no effect when
the surface has no open edges, but improves on rounding issues
around the zero crossing when the surface has open edges.
This may still need future revisiting.
- use parallel list writing, beginDataArray methods.
- use static_assert to restrict conversion of non-label integral types
- cache .vtp.series information by fileName instead of by cloud name.
This issues if the output directory changes, and simplifies code.
ENH: emit TimeValue in files generated by vtkCloud
- additional information for passing to ParaView
ENH: vtkCloud output to postProcessing/ (issue #866)
- better alignment with other function objects, no collision with
foamToVTK output.
- avoid duplicate code by relocating cellZone selection and bounding box
sub-selection into cuttingPlane and cuttingSurfaceBaseSelection.
Allows reuse by inherited classes (sampledPlane, surfMeshSamplePlane).
- takes two general actions:
1. orient edge in canonical direction (positive gradient) and detect
any edge intersection.
2. edge intersection alpha (0-1)
- refactor into a cuttingSurfaceBase intermediate class with the
actions as templated parameters rather than function pointers. This
allows the use of lambda functions with captures from the caller.
- The test condition
[ -n "$cur" -a ... ]
fails if $cur starts with '-le', which bash interprets as a further
test op. Splitting the test condition solves the problem:
[ -n "$cur" ] && [ ... ]
- Since the local edges are oriented according to the gradient,
they can also be used to determine the correct face orientation.
This generalizes the algorithm for future reuse.
- Provides a means of accumulating file entries for generating vtm
by accumulate blocks, datasets and writing them later.
Only a single block depth is currently supported and the methods
are kept fairly simple.
- Output formats such as vtp, vtu follow a particular internal data
structure (HEAD, FIELD_DATA, PIECE, CELL_DATA/POINT_DATA) and other
output conventions. This writer base tracks these expected output
states internally to help avoid logic errors in the callers.
- parallel list output for foamVtkOutput
- simplified '.series' file output
- beginDataArray() method instead of openDataArray() + closeTag()
since this seems to be the most common use anyhow.
With an optional argument for leaving the tag open, this works the
same as openDataArray() which may be deprecated in the future.
- begin/end methods for CellData, PointData, FieldData (commonly used)
- templating parameters for file headers, content version,
legacy fields. This improves coding robustness and convenience of use.
- use formatter and higher-level methods for legacy output
- attribute quoting character now part of the formatter itself
instead of as an argument for xmlAttr().
Toggle with quoting() method.
- pair-wise processing of xml attributes, which also allows them to be
passed as optional entries when creating an xml tag.
- xmlComment with multiple arguments
- allows cell point labels will use global numbering, but only for
unmerged points. We'd ideally like to avoid point merging per se,
and instead use VTK point blanking instead (as required).
This approach allows parallel collation of the output into a single
piece directly.
- there were previously no hashing mechanisms for lists so they
would fall back to the definition for primitives and hash the
memory location of the allocated List object.
- provide a UList::Hash<> sub-class for inheritance, and also a global
specialization for UList<T>, List<T> such that the hash value for
List<List<T>> cascades properly.
- provide similar function in triFace to ensure that it remains
similar in behaviour to face.
- added SymmHash to Pair, for use when order is unimportant.
STYLE: use string::hash() more consistently
- no particular reason to use Hash<word>() which forwards to
string::hash() anyhow
- With argList::noFunctionObjects() we use the logic added in
4b93333292 (issue #352)
By removing the '-noFunctionObjects' option, we automatically
suppress the creation of function-objects via Time (with argList
as a parameter).
There is generally no need in these cases for an additional
runTime.functionObjects().off() statement
Use the argList::noFunctionObjects() for more direct configuration
and reduce unnecessary clutter in the -help information.
In previous versions, the -noFunctionObjects would have been redundant
anyhow, so we can also just ignore it now instead.
- allows use with any container with begin(), end() and where the
"*iterator" dereference returns a label, which is used for indexing
into the list of points.
This container could be labelUList, bitSet, labelHashSet, etc
- takes a direct approach of determining which cells are cut and walks
the cell faces directly to build the resulting surface.
- better handling of corner cases.
* Avoids redundant points when the cut passes exactly through a
mesh point.
* Supresses generation of duplicates faces when the plane cut
coincides exactly with a mesh face.
- for severely concave cells where the plane cuts a face multiple times
there is currently no remedial action taken, except to note the
failure and unwind the insertion of the corresponding points and
faces.
- signedDistance() method is like distance() but retains
the positive/negative sign for the side of the plane.
- the sign() method returns the sign as -1,0,+1 integer for
classification purposes where it is important to distinguish between
a zero value and a positive value (eg, for cutting). Optional
tolerance can be supplied to round for zero.
- refactor and inlined simple and frequently used methods.
- add boundBox faceCentre() method, which can be useful for creating
clipping planes from a bounding box.
Relocated treeBoundBox faceNormals to boundBox since they apply
equally there - the meaning of the faces (x-min, x-max, etc)
is the same, even if the point addressing for the faces differs.
- rationalized code dealing with extraction of name or indices from
coordinateSystems, polyBoundaryMesh, faBoundaryMesh, fvBoundaryMesh,
ZoneMesh to use internal implementations that allow direct
searching/matching without building an intermediate list of names.
- simpler and more efficient handling of patch group matching.
- centralizes IOobject handling and treatment of alternative locations.
If an alternative file location is specified, it will be used instead.
- provide decompositionMethod::canonicalName instead of using
"decomposeParDict" in various places.
- treat as a List constant without requiring inclusion of ListOps.H
- replace use of emptyList<label>() with emptyLabelList directly.
The emptyList<T>() casting is disallowed with many modern compilers
and now marked as deprecated (expect early removal).
- relocate labelList typedef to List.H for more general access.
Similar reasoning to having labelUList defined in UList.H
- makes for easier extraction of boundary values since it encapsulates
start/size directly.
Eg,
SubList<T>(allValues, patches.range());
or
bitSet(blocked, patches.range(patchi));
- allows for simpler unpacking of a full list, or list range into any
sufficiently large integral type.
For example,
processorPolyPatch pp = ...;
UOPstream toNbr(pp.neighbProcNo(), pBufs);
toNbr << faceValues.unpack<char>(pp.range());
General:
* -roots, -hostRoots, -fileHandler
Specific:
* -to <coordinateSystem> -from <coordinateSystem>
- Display -help-compat when compatibility or ignored options are available
STYLE: capitalization of options text
- avoids compiler ambiguity when virtual methods such as
IOdictionary::read() exist.
- the method was introduced in 1806, and was thus not yet widely used
- behaves the same as the valid() method, but can be queried directly
like a normal raw pointer and as per std::unique_ptr.
Eg,
autoPtr<T> ptr = ...
if (ptr) ...
- advanced options are not displayed with -help, but only with
-help-full, which helps retain a better overview of the standard
options. Replaces previous ad hoc suppression of -listSwitches,
-listRegisteredSwitches etc.
- simplifies usage.
Support syncPar check on names() to detect inconsistencies.
- simplify readFields, ReadFields and other routines by using these
new methods.
- what was previously termed 'setLargeCellSubset()' is now simply
'setCellSubset()' and supports memory efficient interfaces.
The new parameter ordering avoids ambiguities caused by default
parameters.
Old parameter order:
setLargeCellSubset
(
const labelList& region,
const label currentRegion,
const label patchID = -1,
const bool syncCouples = true
);
New parameter order:
setCellSubset
(
const label regioni,
const labelUList& regions,
const label patchID = -1,
const bool syncCouples = true
);
And without ambiguity:
setCellSubset
(
const labelUList& selectedCells,
const label patchID = -1,
const bool syncCouples = true
);
- support bitSet directly for specifying the selectedCells for
memory efficiency and ease of use.
- Additional constructors to perform setCellSubset() immediately,
which simplifies coding.
For example,
meshParts.set
(
zonei,
new fvMeshSubset(mesh, selectedCells)
);
Or even
return autoPtr<fvMeshSubset>::New(mesh, selectedCells);
- enclosed with a #ifdef Foam_argList_1712 .. #endif pair
(defined by default).
In a later release, this can be disabled by default.
ENH: add input length check for -hostRoots option
Also extended the cubic equation test routine and modified the error
methods so that they more accurately generate the round of error of
evaluation.
This resolves bug report https://bugs.openfoam.org/view.php?id=3015
- instead of dict.lookup(name) >> val;
can use dict.readEntry(name, val);
for checking of input token sizes.
This helps catch certain types of input errors:
{
key1 ; // <- Missing value
key2 1234 // <- Missing ';' terminator
key3 val;
}
STYLE: readIfPresent() instead of 'if found ...' in a few more places.
- the opposite problem from issue #762. Now we also test if the input
token stream had any tokens at all.
- called by the dictionary get<> and readEntry() methods.
- ignore implicit-fallthrough for ragel generated code.
- add -Wno-deprecated-declarations for c++LESSWARN.
These principally associated with older CGAL versions and their use
of particular mpfr routines.
Some special adjustments are undertaken for distance = 0.
- With the isoSurfaceCell algorithm is used, additional checks for open
surfaces edges are used to limit the extend of resulting distance
surface. The resulting surface elements will not, however, contain
partial cell coverage.
- Always treated as signed (ignoring the input value), since it is
nearly impossible to generate any surface otherwise.
- the original intention was to avoid vtp output when the clouds are
empty anyhow. However, it is useful for post-processing to have
clouds with zero parcels (eg, before the start of injection).
Pruning of empty clouds is now an option in the vtkCloud dictionary
controls, with the default being false (no pruning). This represents
a non-breaking change in behaviour since it generates more output
than previously.
Example,
{
type vtkCloud;
//- Suppress writing of empty clouds (default: false)
prune true;
}
This method waits until all the threads have completed IO operations and
then clears any cached information about the files on disk. This
replaces the deactivation of threading by means of zeroing the buffer
size when writing and reading of a file happen in sequence. It also
allows paraFoam to update the list of available times.
Patch contributed by Mattijs Janssens
Resolves bug report https://bugs.openfoam.org/view.php?id=2962
- functionObjectLibs -> libs
- redirectType -> name
- change deprecated writeCompression flags types to Switch.
- cleanup some trailing ';;' from some dictionaries
- The problem is not 100% reproducible, but be somewhat conservative
and now only close(stdin) for pure background (daemon-like) use of
Foam::system(), where it can be useful.
Using Foam::system() for launching background processes is currently
only used for the doc browser.
- since 1612, FOAM_INST_DIR and foamInstDir longer have any
special meanings when sourcing the bashrc or cshrc files.
Thus no need for special treatment in any of the dispatch wrappers.
Retained FOAM_INST_DIR as (unexported) variable in etc/bashrc,
just in case people are using patched versions of etc/bashrc
as part of their installation.
ENH: relax prefix restrictions on foamCreateVideo (issue #904)
- shift the implicit '.' to be part of the default prefix. This allows
things like "-image myimages_00" to work as might be expected.
- respect trailing '-', '.', '_' for the image prefix name.
For example,
-image press_ to accept press_*.png
- additional -mask width option (for avconv)
- The additional output generated by #calc directives in the
controlDict or decomposeParDict causes issues for the RunFunctions
extraction of 'application' and 'numberOfSubdomains'.
Avoid by using -disableFunctionEntries, which also has the side-effect
of disabling '#include'.
- major() and minor() are GNU macros in sys/sysmacros.h
and generates warning on some systems (eg, Ubuntu 18.04)
use getMajor() and getMinor() as method names instead.
- corrected the mass based correction and updated the misleading function
arguments
- moved the option to the optimisation switches, e.g.:
OptimisationSwitches
{
experimentalDdtCorr 1;
}
- default remains off/no (0)
twoPhaseMixtureThermo writes the temperatures during construction only
for them to be read again immediately after by construction of the
individual phases' thermo models. When running with collated file
handling this behaviour is not thread safe. This change deactivates
threading for the duration of this behaviour.
Patch contributed by Mattijs Janssens
- for larger problems with a smaller region of interest, can apply a
bounding to limit the size of the ensight geometry and fields created.
Since the implementation uses a fvMeshSubset, there is an additional
per-process memory overhead.
A high output frequency should be avoided with moving meshes, since
this indirectly forces a frequent update of the submesh.
- const version of offsets().
- empty() method to test for empty offsets, or zero overall size
- reset() methods for reseting the sizes. For example, when the context
has shifted slightly.
- localStart() methods, similar to localSize() methods
STYLE: make globalIndex single parameter constructors explicit
- added line::last() for consistency with edge::last()
- adjusted unitVec() to return Zero for small vectors.
Consistent with VectorSpace normalised() and vector::normalise()
- Don't remove the constant/polyMesh directory if it contains a
blockMeshDict or blockMeshDict.m4 file. Offer a reminder that
system/ is the normal place for it.
- add additional control via a Foam::infoDetailLevel flag, which is
supported by a 'DetailLevel' macro. Eg,
DetailLevel << "some information" << nl
- When infoDetailLevel is zero, the stdout for all Foam::system() calls
are also redirected to stderr to prevent child output from
appearing on the parent.
- close stdin before exec in system call.
- convenient way to temporarily suspend the SIGFPE handler.
Eg,
// Normal code with SIGFPE enabled ...
sigFpe::set();
{
// Ignore SIGFPE in this scope ...
sigFpe::ignore noFpeHandling;
...
}
- use Enum instead of NamedEnum
- shorter form for dimensionedScalar
- reduce verbosity about missed seeding for DTRM cloud.
Re-enable old warnings in debug mode.
- some paraview versions (eg, on windows) don't support float, only double.
This mostly affected the vtkSurfaceWriter.
The foamToVTK is also affected, but since it also supports the XML
output formats (vtp, vtu) these can be used instead.
- affected manually generated legacy output (vtkSetWriter, vtkSurfaceWriter)
- the order emitted by vtkSetWriter remains, but needs to revisited again.
- this provides easily sortable names.
The time information is available via the corresponding .series
file, which can also be loaded directly with ParaView 5.5 or later.
For further redundancy, time information is saved in the first XML
comment inside of the .vtp files. For example,
<!-- cloud=limestoneCloud1 time=0.005 index=200 -->
- now report as "min = XX max = YY average = ZZ"
instead of as "min/max/average = XX, YY, ZZ"
this makes it easier to parse any particular value
(eg, with foamLog)
- should use bitSet::set() and not bitSet::operator[] to auto-vivify
out-of-range entries
- use bitSet::test() instead of bitSet::operator[] when testing
non-const variables - circumvents any potential out-of-range issues.
- Since 'bool' and 'Switch' use the _identical_ input mechanism
(ie, both accept true/false, on/off, yes/no, none, 1/0), the main
reason to prefer one or the other is the output.
The output for Switch is as text (eg, "true"), whereas for bool
it is label (0 or 1). If the output is required for a dictionary,
Switch may be appropriate. If the output is not required, or is only
used for Pstream exchange, bool can be more appropriate.
- Always used for optional dictionary entries, since these are individual
values, and not meant to be embedded in a larger stream of tokens.
Methods:
- lookupOrDefault, lookupOrAddDefault, lookupOrDefaultCompat
- readIfPresent, readIfPresentCompat
- Handling mandatory dictionary entries is slightly more complex,
since these may be part of larger stream of tokens, and are often
used in a constructor context. For example,
word modelType(dict.lookup("type"));
Or they are used without a definite context. For example,
dict.lookup("format") >> outputFormat;
Newly introduced methods for mandatory dictionary entries:
- get, getCompat
- read, readCompat
In a constructor or assignment context:
word modelType(dict.get<word>("type"));
outputFormat = dict.lookup("format");
without copy/move (similar to readIfPresent):
dict.read("format", outputFormat);
- improves backward compatibility and more naming consistency.
Retain setMany(iter1, iter2) to avoid ambiguity with the
PackedList::set(index, value) method.
Basic directional refinement:
- only for coordinate aligned meshes
- only for refinementRegions
See the mesh/snappyHexMesh/aerofoilNACA0012_directionalRefinement
tutorial.
- the current working path with replacements for base-level
OpenFOAM env variables such as FOAM_RUN, WM_PROJECT_DIR,
WM_PROJECT_USER_DIR etc
Can be used directly from the command-line or embedded into a
command prompt. For example,
PS1='$(foamPwd)\n\u\$ '
- aliases for user solver/utilities located under "$WM_PROJECT_USER_DIR":
(ufoam, uapp, usol, uutil)
- using const reference to temporary was failing. Remedy by using a
direct copy, which is a reasonable solution since surfZone content
is quite minimal.
- downgrades some diagnostics about nonconformant code from errors to
warnings. Oddly enough, the errors actually arise from STL library
elements shipped with gcc itself. Affects kahip compilation with
gcc-6, gcc-7
The minimum number of particles per parcel can now be set in the
injection model input, e.g.:
model1
{
type ...;
massTotal ...;
parcelBasisType ...;
minParticlesPerParcel 1; <-- new optional entry
SOI ...;
...
Uses a value of 1 by default if the entry is not present. The value of
1 is generally recommended and beneficial for coupled cases where small
time steps can lead to the injection of too many parcels and subsequently
greatly over-predict the particle source contributions (momentum, heat,
mass transfer etc)
- problems when the cloud was not available on all processors.
- NB: ensight measured data only allows a single cloud, but
foamToEnsight writes all clouds.
- these were previously taken from region-local directories
(eg, constant/region/triSurface), but this becomes difficult to
manage when there are many files and regions.
- The central InfoSwitch "writeLagrangianPositions" allows writing an
additional Lagrangian "positions" file, but these were not being
written by reconstructPar. These are now also written in reconstructPar
if the central writeLagrangianPositions InfoSwitch is enabled.
NOTES
- "positions" are reconstructed from the processors "coordinates" file
- decomposePar will not attempt to create or redistribute any
"positions" files
- disallow insert() of raw pointers, since a failed insertion
(ie, entry already existed) results in an unmanaged pointer.
Either insert using an autoPtr, or set() with raw pointers or autoPtr.
- IOobjectList::add() now takes an autoPtr instead of an object reference
- IOobjectList::remove() now returns an autoPtr instead of a raw pointer
- use normal instead of volumeType to decide on the sign.
This provides a continuous field and eliminates special handling of
GREAT in iso-surface routines.
- fix regression in isoSurfaceCell cutting that was introduced by the
previous adjustments for distanceSurface
- input or output scaling of values to manage dissimilar unit systems
in the structures model
- logging of communicated force, moments and updated positions.
This allows tracking of the information exchange throughout the
duration of the simulation and may assist in post-simulation diagnosis.
- default is now without polyhedral decomposition, since this produces
compacter files and VTK mananges this in most instances.
However, provide function object flag to reinstate the old behaviour.
Calculates and outputs a field whose values are offset to a reference
value obtained by sampling the field at a user-specified location.
The field values are calculated using:
\f[
f_c = s(f_{c,t} - f_p + f_{off})
\f]
where
\vartable
f_c | field values at cell
s | optional scale factor (default = 1)
f_{c,t} | current field values at cell at this time
f_p | field value at position
f_{off} | offset field value (default = 0)
\endvartable
Usage
Example of function object specification to calculate the reference
field:
\verbatim
pRef
{
type reference;
libs ("libfieldFunctionObjects.so");
...
field p;
result pRef;
position (0 0 0);
scale 1.2;
offset 100000;
}
\endverbatim
- the problem arises since the various surface writers are stateless.
The collated output format hacks around this limitation by adding in
its own fieldDict caching (to disk).
Now include an updateMesh() method to hook into geometry changes.
This is considered a stop-gap measure until the surface output
handling is improved.
- improvement documentation for surface sampling.
- can now specify alternative sampling scheme for obtaining the
face values instead of just using the "cell" value. For example,
sampleScheme cellPoint;
This can be useful for cases when the surface is close to a boundary
cell and there are large gradients in the sampled field.
- distanceSurface now handles non-closed surfaces more robustly.
Unknown regions (not inside or outside) are marked internally and
excluded from consideration. This allows use of 'signed' surfaces
where not previously possible.
- a -valgrind option for logging with valgrind
- determine number of processors from system/decomposeParDict
or -decomposeParDict if -np was not specified
- this should normally not be triggered, provided that setRefCell was
used. However, if getRefCellValue() was called without any previous
checking on refCelli, it is possible to provoke errors.
- The iterator for a HashSet dereferences directly to its key.
- Eg,
for (const label patchi : patchSet)
{
...
}
vs.
forAllConstIter(labelHashSet, patchSet, iter)
{
const label patchi = iter.key();
...
}
- the algorithm was last used in OpenFOAM-2.4, after which it was
replaced with a FaceCellWave version.
Whereas the original (2.4.x) version exhibited performance
degradation on very large meshes (with explicit constraints), the
FaceCellWave version exhibited performance issues with large numbers
of blocked faces.
With large numbers of blocked faces, the FaceCellWave regionSplit
could take between 10 to 100 times longer due to the slow
propagation speed through blocked faces.
The 2.4 regionSplit has been revamped to avoid local memory
allocations, which appears to have been the source of the original
performance issues on large meshes.
For additional performance, intermediate renumbering is also avoided
during the consolidation of regions over processor domains.
- controlled by the the 'printExecutionFormat' InfoSwitch in
etc/controlDict
// Style for "ExecutionTime = " output
// - 0 = seconds (with trailing 's')
// - 1 = day-hh:mm:ss
ExecutionTime = 112135.2 s ClockTime = 113017 s
ExecutionTime = 1-07:08:55.20 ClockTime = 1-07:23:37
- Callable via the new Time::printExecutionTime() method,
which also helps to reduce clutter in the applications.
Eg,
runTime.printExecutionTime(Info);
vs
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
--
ENH: return elapsedClockTime() and clockTimeIncrement as double
- previously returned as time_t, which is less portable.
For example, with some HashTable or Map container of models
{ model0 => 1, model1 => 4, model2 => 5, model3 => 12, model4 => 15, }
specify the remapping
Map<label> mapper({{1, 3}, {2, 6}, {3, 12}, {5, 8}});
inplaceMapValue(mapper, models) then yields
{ model0 => 3, model1 => 4, model2 => 8, model3 => 12, model4 => 15, }
--
ENH: extend bitSet::count() to optionally count unset bits instead.
--
ENH: BitOps compatibility methods for boolList.
- These ease coding that uses a boolList instead of bitSet and use
short-circuit logic when possible.
Eg, when 'bitset' and 'bools' contain the same information
bitset.count() <-> BitOps::count(bools)
bitset.all() <-> BitOps::all(bools)
bitset.any() <-> BitOps::any(bools)
bitset.none() <-> BitOps::none(bools)
These methods can then be used directly in parameters or in logic.
Eg,
returnReduce(bitset.any(), orOp<bool>());
returnReduce(BitOps::any(bools), orOp<bool>());
if (BitOps::any(bools)) ...
- since PackedBoolList is now a compatibility typedef for bitSet,
it is useful to have an additional means of distinction.
STYLE: simplify internal version tests and compiler defines.
- the API version is now conveyed via the OPENFOAM define directly.
The older OPENFOAM_PLUS define is provided for existing code.
- parsing error state only arises from a missing final newline
in the file (which the dnl macro does not capture).
Report with a warning instead of modifying the dnl macro since
we generally wish to know about this anyhow.
- add missing newline to YEqn.H file.
- flags the following type of problems:
* mismatches:
keyword mismatch ( set of { brackets ) in the } entry;
* underflow (too many closing brackets:
keyword too many ( set of ) brackets ) in ) entry;
- a missing semi-colon
dict
{
keyword entry with missing semi-colon
}
will be flagged as 'underflow', since it parses through the '}' but
did not open with it.
Max monitoring depth is 60 levels of nesting, to avoid incurring any
memory allocation.
- handling of dead links (find -L -delete unsupported)
- remove ignore case flag on 's/../../i' used in have_scotch script.
It is unneeded and not tolerated by Darwin's sed.
- avoid embedded comments in EXE_INC (Make/options files), which do
not work well with the OSX LLVM cpp.
It strips out the comments but also removes the continuation char.
STYLE: adjust notes about paraview library locations
- generalize some of the library extensions (.so vs .dylib).
Provide as wmake 'sysFunctions'
- added note about unsupported/incomplete system support
- centralize detection of ThirdParty packages into wmake/ subdirectory
by providing a series of scripts in the spirit of GNU autoconfig.
For example,
have_boost, have_readline, have_scotch, ...
Each of the `have_<package>` scripts will generally provide the
following type of functions:
have_<package> # detection
no_<package> # reset
echo_<package> # echoing
and the following type of variables:
HAVE_<package> # unset or 'true'
<package>_ARCH_PATH # root for <package>
<package>_INC_DIR # include directory for <package>
<package>_LIB_DIR # library directory for <package>
This simplifies the calling scripts:
if have_metis
then
wmake metisDecomp
fi
As well as reducing clutter in the corresponding Make/options:
EXE_INC = \
-I$(METIS_INC_DIR) \
-I../decompositionMethods/lnInclude
LIB_LIBS = \
-L$(METIS_LIB_DIR) -lmetis
Any additional modifications (platform-specific or for an external build
system) can now be made centrally.
- also simplify parsing by accepting any case on keywords.
This implies that something like "sOlId", "SoLiD" will also
be accepted. Although nobody should really count on this rather
generous behaviour, it does simplfy the state machine even further.
- in 2.4.x the general default for polyMesh::findCell was FACE_DIAG_TRIS,
but this was changed to CELL_TETS for better handling of concave
cells.
- in snappyHexMesh meshRefinement, findCell is used to define
locations in mesh and cells for closer refinement. Using CELL_TETS
causes an octree rebuild when the mesh has changed and this adds
considerable overhead. For this operation, the faster FACE_DIAG_TRIS
mode can be used instead.
- the previous grammar used
'/*' { fgoto comment; }
to start processing multi-line comments and
comment := any* :>> '*/' @{ fgoto main; };
as a finishing action to return to normal lexing, but seemed not to
have been triggered properly.
Now simply trap in a single rule:
'/*' any* :>> '*/'; # Multi-line comment
STYLE: use more compact dnl (delete to newline)
OLD: [^\n]* '\n'
NEW: (any* -- '\n') '\n'
eliminates the intermediate state
- the API-versioned calls (eg, tecini142, teczne142, tecpoly142, tecend142),
the limited availability of the SDK and lack of adequate testing make
proper maintenance very difficult.
- these errors are mostly rounding related (when a point is located on
the edge of a bounding box instead of being fully inside it).
For debug > 1, continue to treat as fatal.
- IOstreamOption class to encapsulate format, compression, version.
This is ordered to avoid internal padding in the structure, which
reduces several bytes of memory overhead for stream objects
and other things using this combination of data.
Byte-sizes:
old IOstream:48 PstreamBuffers:88 Time:928
new IOstream:24 PstreamBuffers:72 Time:904
====
STYLE: remove support for deprecated uncompressed/compressed selectors
In older versions, the system/controlDict used these types of
specifications:
writeCompression uncompressed;
writeCompression compressed;
As of DEC-2009, these were deprecated in favour of using normal switch
names:
writeCompression true;
writeCompression false;
writeCompression on;
writeCompression off;
Now removed these deprecated names and treat like any other unknown
input and issue a warning. Eg,
Unknown compression specifier 'compressed', assuming no compression
====
STYLE: provide Enum of stream format names (ascii, binary)
====
COMP: fixed incorrect IFstream construct in FIREMeshReader
- spurious bool argument (presumably meant as uncompressed) was being
implicitly converted to a versionNumber. Now caught by making
IOstreamOption::versionNumber constructor explicit.
- bad version specifier in changeDictionary
- In addition to the traditional Flex-based parser, added a Ragel-based
parser and a handwritten one.
Some representative timings for reading 5874387 points (1958129 tris):
Flex Ragel Manual
5.2s 4.8s 6.7s total reading time
3.8s 3.4s 5.3s without point merging
- However, the new ragel-based parser is much faster
than the others, and does not cause 'too many open files' error
that the flex-based parser does (issue #784).
The timings (using src/sampling as being somewhat representative)
$ wclean; wmakeLnInclude -u .; time wmake -s dep
3.4s wmkdepend (ragel) [now default]
5.7s wmkdep (flex)
6.1s cpp -M
- The makeDepend script is for testing purposes only, but could used as
a hook for other dependency generation systems (eg, ninja).
It simply wraps 'cpp -M' in a form that is calling compatible with
wmkdepend.
BUG: wmkdepend parser was missing optional leading space on #include match
STYLE: use -G2 (goto-based) option for wmkdepend state machine
- the machine is compact with few states and lends itself to this
- the expansions were previously required as slash to follow, but
now either are possible.
"<case>", "<case>/" both yield the same as "$FOAM_CASE" and
will not have a trailing slash in the result. The expansion of
"$FOAM_CASE/" will however have a trailing slash.
- adjust additional files using these expansions
- a partial selection from https://github.com/mrklein/openfoam-os-x
with adjustments. The primary purpose is to reduce header-level
incompatibilities and to provide a common set of make rules to allow
easier patching (or re-integration).
This is similar to efforts (Feb 2010) but using ragel
(https://en.wikipedia.org/wiki/Ragel) instead of the now defunct
coco/r. The modified commit message from 2010:
ENH: add C++-based wmkdepend parser (uses ragel grammar).
- This avoids dependency on lex/flex and provides better encapsulation
for buffer switching. As a result, the maximum number of open files
only corresponds to the include depth.
--
Note that the flex source and rules are still available, but are not
deactivate (see wmake/rules/General/transform)
Support the following expansions when they occur at the start of a
string:
Short-form Equivalent
========= ===========
<etc>/ ~OpenFOAM/ (as per foamEtcFile)
<case>/ $FOAM_CASE/
<constant>/ $FOAM_CASE/constant/
<system>/ $FOAM_CASE/system/
These can be used in fileName expansions to improve clarity and reduce
some typing
"<constant>/reactions" vs "$FOAM_CASE/constant/reactions"
ParaView 5.4 and older:
- requires lib/paraview-X.X only
ParaView 5.5:
- requires lib/
- does not appear to require lib/paraview-X.X, but retained for simplicity
- Change default version to paraview-5.5.0 for testing purposes
- this removes an OS-specific dependency (eg, drand48_r is not POSIX)
and allows easier use of other random number generators.
The Rand48 generator has identical behaviour and period as the
lrand48() library routine, but holds its own seed and state
(which makes it re-entrant) and can be combined with other
random distributions.
However, when using the modified form to obtain scalar values
they will not be identical to what drand48() yields.
This is because drand48() uses the raw 48-bit values to directly
set the mantissa of an IEEE double where as the newer distribution
normalizes based on the 32-bit value.
STYLE: simplify code in Random::shuffle and use Swap
keeping chocked conditions of Mach number.
This BC can work in two modes, chocked or non-chocked. In the
chocked mode the Ma is an input. In the non-chocked mode
the Ma is calculated from model inputs.
- in many cases can just use lookupOrDefault("key", bool) instead of
lookupOrDefault<bool> or lookupOrDefault<Switch> since reading a
bool from an Istream uses the Switch(Istream&) anyhow
STYLE: relocated Switch string names into file-local scope
- improve internal handling to permit deriving resizable containers
(eg, PtrDynList).
- include '->' iterator dereferencing
- Only append/set non-const autoPtr references. This doesn't break
existing code, but makes the intention more transparent.
- both autoPtr and tmp are defined with an implicit construct from
nullptr (but with explicit construct from a pointer to null).
Thus is it safe to use 'nullptr' when returning an empty autoPtr or tmp.
The set of injectionMethods has been extended to include a new option:
injectionMethod movingPoint;
The position is then read as a TimeFunction1 entry, e.g. for a 'table'
type:
position table
(
(0 (-0.009 0.0995 0))
(1e-3 (0.009 0.0995 0))
);
where the list corresponds to the tuples (time (position)), and the time
is relative to the start of injection (SOI)
- when constructing dimensioned fields that are to be zero-initialized,
it is preferrable to use a form such as
dimensionedScalar(dims, Zero)
dimensionedVector(dims, Zero)
rather than
dimensionedScalar("0", dims, 0)
dimensionedVector("zero", dims, vector::zero)
This reduces clutter and also avoids any suggestion that the name of
the dimensioned quantity has any influence on the field's name.
An even shorter version is possible. Eg,
dimensionedScalar(dims)
but reduces the clarity of meaning.
- NB: UniformDimensionedField is an exception to these style changes
since it does use the name of the dimensioned type (instead of the
regIOobject).
- also ensure fewer side-effects from inplaceReorder
- provide ListOps::reorder especially for PackedList and PackedBoolList
since they behave differently from regular lists.
- eliminate iterators from PackedList since they were unused, had
lower performance than direct access and added unneeded complexity.
- eliminate auto-vivify for the PackedList '[] operator.
The set() method provides any required auto-vivification and
removing this ability from the '[]' operator allows for a lower
when accessing the values. Replaced the previous cascade of iterators
with simpler reference class.
PackedBoolList:
- (temporarily) eliminate logic and addition operators since
these contained partially unclear semantics.
- the new test() method tests the value of a single bit position and
returns a bool without any ambiguity caused by the return type
(like the get() method), nor the const/non-const access (like
operator[] has). The name corresponds to what std::bitset uses.
- more consistent use of PackedBoolList test(), set(), unset() methods
for fewer operation and clearer code. Eg,
if (list.test(index)) ... | if (list[index]) ...
if (!list.test(index)) ... | if (list[index] == 0u) ...
list.set(index); | list[index] = 1u;
list.unset(index); | list[index] = 0u;
- deleted the operator=(const labelUList&) and replaced with a setMany()
method for more clarity about the intended operation and to avoid any
potential inadvertent behaviour.
- clockValue class for managing the clock values only, with a null
constructor that does not query the system clock (can defer to later).
Can also be used directly for +/- operations.
- refactor clockTime, cpuTime, clock to reduce storage.
- The bitSet class replaces the old PackedBoolList class.
The redesign provides better block-wise access and reduced method
calls. This helps both in cases where the bitSet may be relatively
sparse, and in cases where advantage of contiguous operations can be
made. This makes it easier to work with a bitSet as top-level object.
In addition to the previously available count() method to determine
if a bitSet is being used, now have simpler queries:
- all() - true if all bits in the addressable range are empty
- any() - true if any bits are set at all.
- none() - true if no bits are set.
These are faster than count() and allow early termination.
The new test() method tests the value of a single bit position and
returns a bool without any ambiguity caused by the return type
(like the get() method), nor the const/non-const access (like
operator[] has). The name corresponds to what std::bitset uses.
The new find_first(), find_last(), find_next() methods provide a faster
means of searching for bits that are set.
This can be especially useful when using a bitSet to control an
conditional:
OLD (with macro):
forAll(selected, celli)
{
if (selected[celli])
{
sumVol += mesh_.cellVolumes()[celli];
}
}
NEW (with const_iterator):
for (const label celli : selected)
{
sumVol += mesh_.cellVolumes()[celli];
}
or manually
for
(
label celli = selected.find_first();
celli != -1;
celli = selected.find_next()
)
{
sumVol += mesh_.cellVolumes()[celli];
}
- When marking up contiguous parts of a bitset, an interval can be
represented more efficiently as a labelRange of start/size.
For example,
OLD:
if (isA<processorPolyPatch>(pp))
{
forAll(pp, i)
{
ignoreFaces.set(i);
}
}
NEW:
if (isA<processorPolyPatch>(pp))
{
ignoreFaces.set(pp.range());
}
- primary points for an external user are the polyMesh constructor
- add config info for gcc-7.3.0
COMP: intel-2017. Ignore unknown pragmas. Disambiguate method resolution.
This class is largely a pre-C++11 holdover. It is now possible to
simply use move construct/assignment directly.
In a few rare cases (eg, polyMesh::resetPrimitives) it has been
replaced by an autoPtr.
- rvalue() is a (transitional) means of converting Xfer content to a
reference for move construct, move assign semantics.
- valid() method for consistency with autoPtr and tmp classes
Improve alignment of its behaviour with std::shared_ptr
- element_type typedef
- swap, reset methods
* additional reference access methods:
cref()
returns a const reference, synonymous with operator().
This provides a more verbose alternative to using the '()' operator
when that is desired.
Mnemonic: a const form of 'ref()'
constCast()
returns a non-const reference, regardless if the underlying object
itself is a managed pointer or a const object.
This is similar to ref(), but more permissive.
Mnemonic: const_cast<>
Using the constCast() method greatly reduces the amount of typing
and reading. And since the data type is already defined via the tmp
template parameter, the type deduction is automatically known.
Previously,
const tmp<volScalarField>& tfld;
const_cast<volScalarField&>(tfld()).rename("name");
volScalarField& fld = const_cast<volScalarField&>(tfld());
Now,
tfld.constCast().rename("name");
auto& fld = tfld.constCast();
--
BUG: attempts to move tmp value that may still be shared.
- old code simply checked isTmp() to decide if the contents could be
transfered. However, this means that the content of a shared tmp
would be removed, leaving other instances without content.
* movable() method checks that for a non-null temporary that is
unique (not shared).
Improve alignment of its behaviour with std::unique_ptr
- element_type typedef
- release() method - identical to ptr() method
- get() method to get the pointer without checking and without releasing it.
- operator*() for dereferencing
Method name changes
- renamed rawPtr() to get()
- renamed rawRef() to ref(), removed unused const version.
Removed methods/operators
- assignment from a raw pointer was deleted (was rarely used).
Can be convenient, but uncontrolled and potentially unsafe.
Do allow assignment from a literal nullptr though, since this
can never leak (and also corresponds to the unique_ptr API).
Additional methods
- clone() method: forwards to the clone() method of the underlying
data object with argument forwarding.
- reset(autoPtr&&) as an alternative to operator=(autoPtr&&)
STYLE: avoid implicit conversion from autoPtr to object type in many places
- existing implementation has the following:
operator const T&() const { return operator*(); }
which means that the following code works:
autoPtr<mapPolyMesh> map = ...;
updateMesh(*map); // OK: explicit dereferencing
updateMesh(map()); // OK: explicit dereferencing
updateMesh(map); // OK: implicit dereferencing
for clarity it may preferable to avoid the implicit dereferencing
- prefer operator* to operator() when deferenced a return value
so it is clearer that a pointer is involve and not a function call
etc Eg, return *meshPtr_; vs. return meshPtr_();
- constexpr, noexcept.
Added an 'at()' method for returning an iterator within the range
and changed operator()(label) to have behaviour as per found().
This makes the labelRange usable as a unary predicate.
- added templated conversion class 'toLabelRange'
- add range() method to polyPatch and surfZone classes, and corresponding
templated conversion functors.
For example,
auto patchDims = ListOps::create<labelRange>
(
mesh.boundaryMesh(),
toLabelRange<polyPatch>()
);
to create a List<labelRange> representing the patch extents.
- relocated HashSetPlusEqOp and HashTablePlusEqOp to
HashSetOps::plusEqOp and HashTableOps::plusEqOp, respectively
- additional functions for converting between a labelHashSet
and a PackedBoolList or List<bool>:
From lists selections to labelHashSet indices:
HashSetOps::used(const PackedBoolList&);
HashSetOps::used(const UList<bool>&);
From labelHashSet to list forms:
PackedBoolList bitset(const labelHashSet&);
List<bool> bools(const labelHashSet&);
- relocated ListAppendEqOp and ListUniqueEqOp to ListOps::appendEqOp
and ListOps::UniqueEqOp, respectively for better code isolation and
documentation of purpose.
- relocated setValues to ListOps::setValue() with many more
alternative selectors possible
- relocated createWithValues to ListOps::createWithValue
for better code isolation. The default initialization value is itself
now a default parameter, which allow for less typing.
Negative indices in the locations to set are now silently ignored,
which makes it possible to use an oldToNew mapping that includes
negative indices.
- additional ListOps::createWithValue taking a single position to set,
available both in copy assign and move assign versions.
Since a negative index is ignored, it is possible to combine with
the output of List::find() etc.
STYLE: changes for PackedList
- code simplication in the PackedList iterators, including dropping
the unused operator() on iterators, which is not available in plain
list versions either.
- improved sizing for PackedBoolList creation from a labelUList.
ENH: additional List constructors, for handling single element list.
- can assist in reducing constructor ambiguity, but can also helps
memory optimization when creating a single element list.
For example,
labelListList labels(one(), identity(mesh.nFaces()));
- constexpr, noexcept on various bits
- addition of a 'one::minus' class that returns '-1' instead of '1'.
There are no additional operations defined for this class,
but it can be used in various places to signal alternative behaviour
such as "initialize to a negative or other invalid value"
- This class is largely a pre-C++11 holdover, prior to having movable
references.
- align internals with autoPtr instead of always unconditionally
allocating memory. The valid() method can be used to check for a null
pointer.
- Consolidate into a single file, in anticipation of future removal.
- deprecated MAR-2017
subset(const UList<T>& select, const T& value, const ListType&);
inplaceSubset(const UList<T>& select, const T& value, ListType&);
The subsetList/inplaceSubsetList variants with a unary predicate
provide more flexible and robuster solutions.
- deprecated MAR-2017
initList(const T[mRows]);
initListList(const T[mRows][nColumns]);
Required prior to the addition of constructors with
std::initializer_list
* For most cases, this conversion would be largely unintentional
and also less efficient. If the regex is desirable, the caller
should invoke it explicitly.
For example,
findStrings(regExp(str), listOfStrings);
Or use one of the keyType, wordRe, wordRes variants instead.
If string is to be used as a plain (non-regex) matcher,
this can be directly invoked
findMatchingStrings(str, listOfStrings);
or using the ListOps instead:
findIndices(listOfStrings, str);
* provide function interfaces for keyType.
- subsetList, inplaceSubsetList with optional inverted logic.
- use moveable elements where possible.
- allow optional starting offset for the identity global function.
Eg, 'identity(10, start)' vs 'identity(10) + start'
- more consistent with STL practices for function classes.
- string::hash function class now operates on std::string rather
than Foam::string since we have now avoided inadvertent use of
string conversion from int in more places.
- Eg instead of using labelHashSet, used HashSet<label> which uses
the string::hash for hashing. Other places inadvertently using the
string::hash instead of Hash<label> for hashing.
STYLE: use Map<..> instead of HashTable<.., label, Hash<label>>
- reduces clutter
- add copy construct from UList
- remove copy construct from dissimilar types.
This templated constructor was too generous in what it accepted.
For the special cases where a copy constructor is required with
a change in the data type, now use the createList factory method,
which accepts a unary operator. Eg,
auto scalars = scalarList::createList
(
labels,
[](const label& val){ return 1.5*val; }
);
- now warn about the following:
* the bounding box does not overlap wih the global mesh
* plane does not intersect the (valid) bounding box
* plane does not intersect the global mesh
- add bounding to the "plane" variant of a sampled plane.
- simplify structure, removed unused constuctors.
- transfer from base objects via '=' assignment removed as being too
non-transparent
- add New factory method with perfect forwarding.
- use std::reverse_iterator adaptors, avoid the array-bounds warning
- use pointer arithmetic instead of dereferencing the internal array
- adjust logic to use 'operator<' instead of 'operator>' in sorting.
This creates less work when making other classes sortable.
- the transfer method was previously a copy
- use std::reverse_iterator adaptors in FixedList
This greatly reduces the amount of code and now avoids the array-bounds
warning for FixedList::rend()
- use pointer arithmetic instead of dereferencing the internal array
- without these will use the normal move construct + move assign.
This is similarly efficient, but avoids the inadvertently having the
incorrect Swap being used for derived classes.
STYLE: remove unused xfer methods for HashTable, HashSet
- unneeded since move construct and move assignment are possible
- can stop producing content when the target number of entries has
been reached.
- change return type to labelList instead an Xfer container.
This allows return-value-optimization and avoids a surrounding
allocation. This potentially breaks existing code.
- make PackedList and PackedBoolList moveable. Drop xfer wrappers.
- forward command-line arguments for paraview, where they may also be
evaluated (cshrc, POSIX shell)
Eg,
. etc/bashrc ParaView_VERSION=5.4.1-mpipy
source etc/cshrc ParaView_VERSION=5.4.1-mpipy
- this currently just strips off the leading parent directory name
"/this/path/and/subdirs/name"
relative("/this/path") -> "and/subdirs/name"
relative("/this") -> "path/and/subdirs/name"
'delta'
The scheme should now be specified using, e.g.
div(phi,U) Gauss DEShybrid
linear // scheme 1
linearUpwind grad(U) // scheme 2
hmax // LES delta name, e.g. 'delta', 'hmax'
0.65 // DES coefficient, typically = 0.65
30 // Reference velocity scale
2 // Reference length scale
0 // Minimum sigma limit (0-1)
1 // Maximum sigma limit (0-1)
1.0e-03; // Limiter of B function, typically 1e-03
- simplify structure.
- protect against nullptr when resetting memory streams
- make UIListStream swappable
- add uiliststream as an example of using a plain std::istream
- define regExp::results_type using SubStrings container for handling
groups. This makes a later shift to std::smatch easier, but changes
the regExp API for matching with groups. Previously had list element
0 for regex group 1, now list element 0 is the entire match and list
element 1 is regex group 1.
Old:
List<std::string> mat;
if (re.match(text, mat)) Info<< "group 1: " << mat[0] << nl;
New:
regExp::results_type mat;
if (re.match(text, mat)) Info<< "group 1: " << mat.str(1) << nl;
- problems were introduced by the change ee252307d3 (issue #686).
Affected reading of OBJ files.
The fallback zone (used to catch unnamed groups/zones), which was
previously filtered away when not needed. Now handle more explicitly.
ENH: use stringOps::split and low-level read{Label,Scalar} for parsing OBJ file
- export library path for gmp/mpfr from CGAL config files.
This is required when non-system gmp/mpfr libraries are being
used, but not using a ThirdParty compiler installation.
- automatically handle lib/ vs lib64/ (eg, for central installations)
for packages such as boost, CGAL, etc. While the ThirdParty
compilation of these will normally land in lib64/, this may not be
the case when they are supplied by another means.
- reworked the handling of foamEtcFile and foamCleanPath for less
clutter in the configuration files.
Added the bin/tools/lib-dir script to handle logic that is
too complex to easily manage in csh.
The total number of escaped|stick particles in patches can now be sorted by the injectorID from
which the particle originated. It uses outputByInjectorId keyword in the localInteractionCoeffs
dictionary
- for tutorials that are known to run poorly, can provide a
placeholder Allrun-optional instead of the usual Allrun script.
If this is detected, the case will be skipped.
- can be used to handle when options become redundant, but it is
undesirable to treat its presence as an error. Can now tag it as
being ignored.
argList::ignoreOptionCompat({"oldOption", 1706}, true);
argList::ignoreOptionCompat({"oldBoolOpttion", 1706}, false);
command -oldOption xyz -oldBoolOpttion
- use succincter method names that more closely resemble dictionary
and HashTable method names. This improves method name consistency
between classes and also requires less typing effort:
args.found(optName) vs. args.optionFound(optName)
args.readIfPresent(..) vs. args.optionReadIfPresent(..)
...
args.opt<scalar>(optName) vs. args.optionRead<scalar>(optName)
args.read<scalar>(index) vs. args.argRead<scalar>(index)
- the older method names forms have been retained for code compatibility,
but are now deprecated
- now avoid Istream and token mechanism in favour of a simpler string
parser. This makes the code clearer, smaller, robuster.
- provide convenience ge/gt/le/lt static constructors for scalarRange
for using bounds directly with specifying via a string parameter.
- scalarRange, scalarRanges now follow the unary predicate pattern
(using an operator() for testing). This allows their reuse in
other contexts. Eg, for filtering operations:
myHash.filterValues(scalarRange::ge(100));
- remove unused scalarRanges methods that were specific to handling
lists of time values. These were superseded by timeSelector methods
several versions ago.
- support move construct/assignment for linked-lists themselves
and when moving into a 'normal' list
- better consistency with begin/end signatures and the various
iterators.
- for indirect linked-lists, provide iterator access to the underlying
data element address: iter.get() vs &(iter())
- add standard '->' indirection for iterators (as per normal STL
definitions)
- comments
- avoid egrep for getting processor count.
- wcleanBuild, wcleanPlatform with shorter form '-curr' instead of '-c'
to avoid any potential user confusion with '-comp'
- this avoids a situation when an aborted sourcing of the etc/bashrc
file can leave WM_SHELL_FUNCTIONS defined, which causes all
subsequent sourcing to fail.
- can be used to test the behaviour of the decomposion and its
characteristics without writing any decomposition to disk.
Combine with -cellDist to visualize the expected decomposition
result.
- aids with detection of excess tokens (issue #762)
- deprecated dictionary::operator[] in favour of the lookup() method
which offers more flexibilty and clarity of purpose.
Additionally, the read<> and get<> forms should generally be used
instead anyhow.
- FOAM_CONFIG_NOUSER
Suppress use of user/group configuration files.
This is useful when packaging for a central installation.
- allow additional user tuning of compiler settings.
Per-compiler overrides in "compiler-$WM_COMPILER" files
- the vector normalise() method modifies the object inplace,
the normalised function returns a copy.
vector vec1(1,2,3);
vec1.normalise();
vs
vector vec1(1,2,3);
vec1 /= mag(vec1) + VSMALL;
For const usage, can use either of these
const vector vec2a(normalised(vector(1,2,3)));
const vector vec2b(vector(1,2,3).normalise());
DOC: document topo sources inputs in doxygen format
ENH: check for excess tokens in dictionary input (issue #762)
- various bits of code cleanup (modernization) in meshTool/sets.
- improve doxygen entries for searchable surfaces.
- support selection of searchable surfaces with shorter names.
Eg,
type box | cylinder | ...;
vs type searchableBox | searchableCylinder | ...;
- relocate some standard functionality to TimePaths to allow a lighter
means of managing time directories without using the entire Time
mechanism.
- optional enableLibs for Time construction (default is on)
and a corresponding argList::noLibs() and "-no-libs" option
STYLE:
- mark Time::outputTime() as deprecated MAY-2016
- use pre-increment for runTime, although there is no difference in
behaviour or performance.
- support VTP input in functionObjectCloud scene element
- additional fallback lookup of cloud information from state properties
instead of cloud OutputProperties
version on a switch. See #867
By default the code will use the same form as previous versions
To use the experimental version integrated from openfoam.org commit
da787200 set the info switch in the controlDict:
InfoSwitches
{
experimentalDdtCorr 1;
}
- when the iso-surface (eg, a cut plane, or distanceSurface) passes
exactly through the cell centre, zero-sized triangles can occur.
These should be merged away.
- link CGAL (clang version) without reference to mpfr,gmp libraries
- use offset address in printStack for Darwin as well
- alternative handling of feexcept on Darwin
- Reimplemented treatment of alpha1, phi and U in case of
nOuterCorrectors > 1 based on storePrevIter() to avoid cluttering the
solver with unnecessary fields in case of nOuterCorrectors = 1.
- Updated tutorial headers
- Added copyright note to isoAdvector src
- Removed outcommented code lines in interIsoFoam solver
- Removed all LTS from interIsoFoam since this is not currently supported
- Confirmed that discInConstantFlow gives identical results with N subCylces and time step N*dt
- Confirmed that this also holds when nOuterCorrectors > 1.
- start/end values were underrepresented due to rounding.
Now extend the range to include -0.5 and +0.5 beyond the usual
range to ensure the same number density.
Residual fields can be written using the new 'writeFields' entry, e.g.
functions
{
residual
{
type residuals;
libs ("libutilityFunctionObjects.so");
fields (".*");
writeControl writeTime;
writeFields true;
}
}
Fields currently correspond to the initial residual for the last solver
iteration.
-dry-run : perform check only and no writing
-dry-run-write: perform check and write to the next time step. This
also triggers function objects that fire on the call to write()
Improvements to existing functionality
--------------------------------------
- MPI is initialised without thread support if it is not needed e.g. uncollated
- Use native c++11 threading; avoids problem with static destruction order.
- etc/cellModels now only read if needed.
- etc/controlDict can now be read from the environment variable FOAM_CONTROLDICT
- Uniform files (e.g. '0/uniform/time') are now read only once on the master only
(with the masterUncollated or collated file handlers)
- collated format writes to 'processorsNNN' instead of 'processors'. The file
format is unchanged.
- Thread buffer and file buffer size are no longer limited to 2Gb.
The global controlDict file contains parameters for file handling. Under some
circumstances, e.g. running in parallel on a system without NFS, the user may
need to set some parameters, e.g. fileHandler, before the global controlDict
file is read from file. To support this, OpenFOAM now allows the global
controlDict to be read as a string set to the FOAM_CONTROLDICT environment
variable.
The FOAM_CONTROLDICT environment variable can be set to the content the global
controlDict file, e.g. from a sh/bash shell:
export FOAM_CONTROLDICT=$(foamDictionary $FOAM_ETC/controlDict)
FOAM_CONTROLDICT can then be passed to mpirun using the -x option, e.g.:
mpirun -np 2 -x FOAM_CONTROLDICT simpleFoam -parallel
Note that while this avoids the need for NFS to read the OpenFOAM configuration
the executable still needs to load shared libraries which must either be copied
locally or available via NFS or equivalent.
New: Multiple IO ranks
----------------------
The masterUncollated and collated fileHandlers can now use multiple ranks for
writing e.g.:
mpirun -np 6 simpleFoam -parallel -ioRanks '(0 3)'
In this example ranks 0 ('processor0') and 3 ('processor3') now handle all the
I/O. Rank 0 handles 0,1,2 and rank 3 handles 3,4,5. The set of IO ranks should always
include 0 as first element and be sorted in increasing order.
The collated fileHandler uses the directory naming processorsNNN_XXX-YYY where
NNN is the total number of processors and XXX and YYY are first and last
processor in the rank, e.g. in above example the directories would be
processors6_0-2
processors6_3-5
and each of the collated files in these contains data of the local ranks
only. The same naming also applies when e.g. running decomposePar:
decomposePar -fileHandler collated -ioRanks '(0 3)'
New: Distributed data
---------------------
The individual root directories can be placed on different hosts with different
paths if necessary. In the current framework it is necessary to specify the
root per slave process but this has been simplified with the option of specifying
the root per host with the -hostRoots command line option:
mpirun -np 6 simpleFoam -parallel -ioRanks '(0 3)' \
-hostRoots '("machineA" "/tmp/" "machineB" "/tmp")'
The hostRoots option is followed by a list of machine name + root directory, the
machine name can contain regular expressions.
New: hostCollated
-----------------
The new hostCollated fileHandler automatically sets the 'ioRanks' according to
the host name with the lowest rank e.g. to run simpleFoam on 6 processors with
ranks 0-2 on machineA and ranks 3-5 on machineB with the machines specified in
the hostfile:
mpirun -np 6 --hostfile hostfile simpleFoam -parallel -fileHandler hostCollated
This is equivalent to
mpirun -np 6 --hostfile hostfile simpleFoam -parallel -fileHandler collated -ioRanks '(0 3)'
This example will write directories:
processors6_0-2/
processors6_3-5/
A typical example would use distributed data e.g. no two nodes, machineA and
machineB, each with three processes:
decomposePar -fileHandler collated -case cavity
# Copy case (constant/*, system/*, processors6/) to master:
rsync -a cavity machineA:/tmp/
# Create root on slave:
ssh machineB mkdir -p /tmp/cavity
# Run
mpirun --hostfile hostfile icoFoam \
-case /tmp/cavity -parallel -fileHandler hostCollated \
-hostRoots '("machineA" "/tmp" "machineB" "/tmp")'
Contributed by Mattijs Janssens
Specialized variants of the power law porosity and k epsilon turbulence models
developed to simulate atmospheric flow over forested and non-forested complex
terrain.
Class
Foam::powerLawLopesdaCosta
Description
Variant of the power law porosity model with spatially varying
drag coefficient
given by:
\f[
S = -\rho C_d \Sigma |U|^{(C_1 - 1)} U
\f]
where
\vartable
\Sigma | Porosity surface area per unit volume
C_d | Model linear coefficient
C_1 | Model exponent coefficient
\endvartable
Reference:
\verbatim
Costa, J. C. P. L. D. (2007).
Atmospheric flow over forested and non-forested complex terrain.
\endverbatim
Class
Foam::RASModels::kEpsilonLopesdaCosta
Description
Variant of the standard k-epsilon turbulence model with additional source
terms to handle the changes in turbulence in porous regions represented by
the powerLawLopesdaCosta porosity model.
Reference:
\verbatim
Costa, J. C. P. L. D. (2007).
Atmospheric flow over forested and non-forested complex terrain.
\endverbatim
The default model coefficients are
\verbatim
kEpsilonLopesdaCostaCoeffs
{
Cmu 0.09;
C1 1.44;
C2 1.92;
sigmak 1.0;
sigmaEps 1.3;
}
\endverbatim
Tutorial case to follow.
Minmod is the default limiter function and specified with an explicit name e.g.:
gradSchemes
{
default Gauss linear;
limited cellLimited Gauss linear 1;
}
Venkatakrishnan and cubic limiter functions are also provided and may be
specified explicitly e.g.:
gradSchemes
{
default Gauss linear;
limited cellLimited<Venkatakrishnan> Gauss linear 1;
}
or
gradSchemes
{
default Gauss linear;
limited cellLimited<cubic> 1.5 Gauss linear 1;
}
The standard minmod function is recommended for most applications but if
convergence or stability problems arise it may be beneficial to use one of the
alternatives which smooth the gradient limiting. The Venkatakrishnan is not
well formulated and allows the limiter to exceed 1 whereas the cubic limiter is
designed to obey all the value and gradient constraints on the limiter function,
see
Michalak, K., & Ollivier-Gooch, C. (2008).
Limiters for unstructured higher-order accurate solutions
of the Euler equations.
In 46th AIAA Aerospace Sciences Meeting and Exhibit (p. 776).
The cubic limiter function requires the transition point at which the limiter
function reaches 1 is an input parameter which should be set to a value between
1 and 2 although values larger than 2 are physical but likely to significantly
reduce the accuracy of the scheme.
VenkatakrishnanGradientLimiter: Updated documentation
cubicGradientLimiter: Documented private data
The tutorial demonstrates generation of a C-grid mesh using blockMesh
The geometry is provided by a surface mesh (OBJ file) of the NACA0012 aerofoil
The case is setup with a freestream flow speed of Ma=0.72
Thanks to Kai Bastos at Duke University for the geometry and helpful input.
Description
This boundary condition extrapolates field to the patch using the near-cell
values and adjusts the distribution to match the specified, optionally
time-varying, mean value. This extrapolated field is applied as a
fixedValue for outflow faces but zeroGradient is applied to inflow faces.
This boundary condition can be applied to pressure when inletOutlet is
applied to the velocity so that a zeroGradient condition is applied to the
pressure at inflow faces where the velocity is specified to avoid an
unphysical over-specification of the set of boundary conditions.
Usage
\table
Property | Description | Required | Default value
meanValue | mean value Function1 | yes |
phi | Flux field name | no | phi
\endtable
Example of the boundary condition specification:
\verbatim
<patchName>
{
type fixedMeanOutletInlet;
meanValue 1.0;
}
\endverbatim
See also
Foam::fixedMeanFvPatchField
Foam::outletInletFvPatchField
Foam::Function1Types
These BCs blend between typical inflow and outflow conditions based on the
velocity orientation.
airFoil2D tutorial updated to demonstrate these new BCs.
In constant/chemistryProperties in addition to the specification of the initial
ODE integration time-step used at the start of the run:
initialChemicalTimeStep 1e-12;
this time step may now also be specified for every chemistry integration by
setting the optional entry maxChemicalTimeStep, e.g.
maxChemicalTimeStep 1e-12;
The number of characters needed to print a double in scientific format
is 8 plus the number of decimal places; e.g., -6.453452e-231 (6 decimal
places, 14 characters). This has been set in writeFile.C, replacing a
value of 7. Presumably, the case of three digits in the exponent was not
considered when this was first implemented. This change ensures at least
one character of whitespace between tabulated numbers.
This resolves bug report https://bugs.openfoam.org/view.php?id=2801
chtMultiRegionFoam now supports reaction/combustion modelling in fluid
regions in the same way as reactingFoam.
TUT: chtMultiRegionFoam: Added reverseBurner tutorial
This tutorial demonstrates chtMultiRegionFoam's combustion capability
Thermo and reaction thermo macros have been renamed and refactored. If
the name is plural (make???Thermos) then it adds the model to all
selection tables. If not (make???Thermo) then it only adds to the
requested psi or rho table.
This mixture allows a reacting solver to be used with a single component
fluid without the additional case files usually required for reacting
thermodynamics.
reactionThermo: Instantiated more single component mixtures
ENH: reactionThermo: Select singleComponentMixture as pureMixture
A pureMixture can now be specified in a reacting solver. This further
enhances compatibility between non-reacting and reacting solvers.
To achieve this, mixtures now have a typeName function of the same form
as the lower thermodyanmic models. In addition, to avoid name clashes,
the reacting thermo make macros have been split into those that create
entries on multiple selection tables, and those that just add to the
reaction thermo table.
This function object will write a paraview-viewable field showing the
area-density of parcel collisions on every patch face. It also outputs
the rate of collisions hitting each patch face, calculated over an
interval equal to the time elapsed since the last output. It has an
optional entry to specify a minimum incident speed below which a
collision is not counted.
It can be enabled in the cloud properties file as follows:
cloudFunctions
{
patchCollisionDensity1
{
type patchCollisionDensity;
minSpeed 1e-3; // (optional)
}
}
This work was supported by Anton Kidess, at Hilti
The combustion and chemistry models no longer select and own the
thermodynamic model; they hold a reference instead. The construction of
the combustion and chemistry models has been changed to require a
reference to the thermodyanmics, rather than the mesh and a phase name.
At the solver-level the thermo, turbulence and combustion models are now
selected in sequence. The cyclic dependency between the three models has
been resolved, and the raw-pointer based post-construction step for the
combustion model has been removed.
The old solver-level construction sequence (typically in createFields.H)
was as follows:
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(mesh)
);
psiReactionThermo& thermo = combustion->thermo();
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, thermo)
);
combustion->setTurbulence(*turbulence);
The new sequence is:
autoPtr<psiReactionThermo> thermo(psiReactionThermo::New(mesh));
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, *thermo)
);
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(*thermo, *turbulence)
);
ENH: combustionModel, chemistryModel: Simplified model selection
The combustion and chemistry model selection has been simplified so
that the user does not have to specify the form of the thermodynamics.
Examples of new combustion and chemistry entries are as follows:
In constant/combustionProperties:
combustionModel PaSR;
combustionModel FSD;
In constant/chemistryProperties:
chemistryType
{
solver ode;
method TDAC;
}
All the angle bracket parts of the model names (e.g.,
<psiThermoCombustion,gasHThermoPhysics>) have been removed as well as
the chemistryThermo entry.
The changes are mostly backward compatible. Only support for the
angle bracket form of chemistry solver names has been removed. Warnings
will print if some of the old entries are used, as the parts relating to
thermodynamics are now ignored.
ENH: combustionModel, chemistryModel: Simplified model selection
Updated all tutorials to the new format
STYLE: combustionModel: Namespace changes
Wrapped combustion model make macros in the Foam namespace and removed
combustion model namespace from the base classes. This fixes a namespace
specialisation bug in gcc 4.8. It is also somewhat less verbose in the
solvers.
This resolves bug report https://bugs.openfoam.org/view.php?id=2787
ENH: combustionModels: Default to the "none" model
When the constant/combustionProperties dictionary is missing, the solver
will now default to the "none" model. This is consistent with how
radiation models are selected.
and replaced multiphaseInterDyMFoam with a script which reports this change.
The multiphaseInterDyMFoam tutorials have been moved into the multiphaseInterFoam directory.
This change is one of a set of developments to merge dynamic mesh functionality
into the standard solvers to improve consistency, usability, flexibility and
maintainability of these solvers.
Henry G. Weller
CFD Direct Ltd.
and replaced interDyMFoam with a script which reports this change.
The interDyMFoam tutorials have been moved into the interFoam directory.
This change is one of a set of developments to merge dynamic mesh functionality
into the standard solvers to improve consistency, usability, flexibility and
maintainability of these solvers.
Henry G. Weller
CFD Direct Ltd.
interMixingFoam, multiphaseInterFoam: Updated for changes to interFoam
and replaced rhoPimpleDyMFoam with a script which reports this change.
The rhoPimpleDyMFoam tutorials have been moved into the rhoPimpleFoam directory.
This change is the first of a set of developments to merge dynamic mesh
functionality into the standard solvers to improve consistency, usability,
flexibility and maintainability of these solvers.
Henry G. Weller
CFD Direct Ltd.
rhoReactingFoam: Updated for changes to rhoPimpleFoam files
Now pimpleDyMFoam is exactly equivalent to pimpleFoam when running on a
staticFvMesh. Also when the constant/dynamicMeshDict is not present a
staticFvMesh is automatically constructed so that the pimpleDyMFoam solver can
run any pimpleFoam case without change.
pimpleDyMFoam: Store Uf as an autoPtr for better error handling
pimpleFoam: Set initial deltaT from the Courant number
for improved stability on start-up and compatibility with pimpleDyMFoam
ENH: pimpleFoam: Merged dynamic mesh functionality of pimpleDyMFoam into pimpleFoam
and replaced pimpleDyMFoam with a script which reports this change.
The pimpleDyMFoam tutorials have been moved into the pimpleFoam directory.
This change is the first of a set of developments to merge dynamic mesh
functionality into the standard solvers to improve consistency, usability,
flexibility and maintainability of these solvers.
Henry G. Weller
CFD Direct Ltd.
tutorials/incompressible/pimpleFoam: Updated pimpleDyMFoam tutorials to run pimpleFoam
Renamed tutorials/incompressible/pimpleFoam/RAS/wingMotion/wingMotion2D_pimpleDyMFoam
-> tutorials/incompressible/pimpleFoam/RAS/wingMotion/wingMotion2D_pimpleFoam
XiEngineFoam is a premixed/partially-premixed combustion engine solver which
exclusively uses the Xi flamelet combustion model.
engineFoam is a general engine solver for inhomogeneous combustion with or
without spray supporting run-time selection of the chemistry-based combustion
model.
Standard crank-connecting rod and the new free-piston kinematics motion options
are provides, others can easily be added.
Contributed by Francesco Contino and Nicolas Bourgeois, BURN Research Group.
The patch magSf calculation has been changed so that it uses the same
triangulation as the overlap algorithm. This improves consistency and
means that for exactly conforming patches (typically before any mesh
motion) the weights do not require normalisation.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2785
ENH: compressibleInterFoam family: merged two-phase momentum stress modelling from compressibleInterPhaseTransportFoam
The new momentum stress model selector class
compressibleInterPhaseTransportModel is now used to select between the options:
Description
Transport model selection class for the compressibleInterFoam family of
solvers.
By default the standard mixture transport modelling approach is used in
which a single momentum stress model (laminar, non-Newtonian, LES or RAS) is
constructed for the mixture. However if the \c simulationType in
constant/turbulenceProperties is set to \c twoPhaseTransport the alternative
Euler-Euler two-phase transport modelling approach is used in which separate
stress models (laminar, non-Newtonian, LES or RAS) are instantiated for each
of the two phases allowing for different modeling for the phases.
Mixture and two-phase momentum stress modelling is now supported in
compressibleInterFoam, compressibleInterDyMFoam and compressibleInterFilmFoam.
The prototype compressibleInterPhaseTransportFoam solver is no longer needed and
has been removed.
Another exception has been added to globalIndexAndTransform to prevent
transformations being generated from coupled patch pairs marked with
coincident-full-match transformations. Foamy generates such patches, and
the faces on them at intermediate stages of meshing can be degenerate,
making the calculation of transformations unreliable. This change
enforces the definition that coincident-full-match patch pairs are not
transformed.
To unsure fvOptions are instantiated for post-processing createFvOptions.H must
be included in createFields.H rather than in the solver directly.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2733
BUG: porousSimpleFoam: moved createFvOptions.H into createFields.H for -postProcess option
Resolves bug-report https://bugs.openfoam.org/view.php?id=2733
BUG: solvers: Moved fvOption construction into createFields.H for post-processing
This ensures that the fvOptions are constructed for the -postProcessing option
so that functionObjects which process fvOption data operate correctly in this
mode.
The absolute value of the the time has been added to the rigid body
model state. This value is not directly necessary for calculating the
evolution of the rigid body system, it just facilitates the
implementation of sub-models which are in some way time-dependent.
Mixture molecular weight is now evaluated in heThermo like everything
else, relying on the low level specie mixing rules. Units have also been
corrected.
SpecieMixture: Pure virtual definition for W to prevent Clang warning
to support the evaporation of the solvent from the wax film and the changes in
viscosity caused by the reduction in solvent content.
BUG: filmViscosityModel::thixotropicViscosity: Corrected sign of impingement rate
to compensate for rhoSp having the wrong sign
BUG: surfaceFilmModels::waxSolventEvaporation: Corrected handling of impingement
ENH: surfaceFilmModels::waxSolventViscosity: Changed mixing to mole-fraction based
ENH: surfaceFilmModels::thermoSingleLayer: Added call to solveContinuity before updateSubmodels
to allow sub-models to solve transport equations for conserved properties
In the event that matching centroids across a coupled patch pair fails,
we fall back to matching the face point average. The latter can be
obtained more reliably on degenerate faces as the calculation does not
involve division by the face area.
This fallback was already implemented as part of processorPolyPatch.
This change also applies it to the faceCoupleInfo class used by
reconstructParMesh.
In this version of compressibleInterFoam separate stress models (laminar,
non-Newtonian, LES or RAS) are instantiated for each of the two phases allowing
for completely different modeling for the phases.
e.g. in the climbingRod tutorial case provided a Newtonian laminar model is
instantiated for the air and a Maxwell non-Newtonian model is instantiated for
the viscoelastic liquid. To stabilize the Maxwell model in regions where the
liquid phase-fraction is 0 the new symmTensorPhaseLimitStabilization fvOption is
applied.
Other phase stress modeling combinations are also possible, e.g. the air may be
turbulent but the liquid laminar and an RAS or LES model applied to the air
only. However, to stabilize this combination a suitable fvOption would need to
be applied to the turbulence properties where the air phase-fraction is 0.
Henry G. Weller, Chris Greenshields
CFD Direct Ltd.
The restraints generate either joint-local (tau) or global (fx) forces.
At the moment they all generate the latter. This change corrects three
of the four restraints so that the forces are in the gobal coordinate
system and not the local coordinate system of the body.
The problem with this is that the forward dynamics code then transforms
most of the forces back to the body local coordinate system. A better
solution would be to associate restraints which are more sensibly
defined in a local frame with the joints instead of the bodies, and
return the forces as part of the tau variable.
Two boundary conditions for the modelling of semi-permeable baffles have
been added. These baffles are permeable to a number of species within
the flow, and are impermeable to others. The flux of a given species is
calculated as a constant multipled by the drop in mass fraction across
the baffle.
The species mass-fraction condition requires the transfer constant and
the name of the patch on the other side of the baffle:
boundaryField
{
// ...
membraneA
{
type semiPermeableBaffleMassFraction;
samplePatch membranePipe;
c 0.1;
value uniform 0;
}
membraneB
{
type semiPermeableBaffleMassFraction;
samplePatch membraneSleeve;
c 0.1;
value uniform 1;
}
}
If the value of c is omitted, or set to zero, then the patch is
considered impermeable to the species in question. The samplePatch entry
can also be omitted in this case.
The velocity condition does not require any special input:
boundaryField
{
// ...
membraneA
{
type semiPermeableBaffleVelocity;
value uniform (0 0 0);
}
membraneB
{
type semiPermeableBaffleVelocity;
value uniform (0 0 0);
}
}
These two boundary conditions must be used in conjunction, and the
mass-fraction condition must be applied to all species in the
simulation. The calculation will fail with an error message if either is
used in isolation.
A tutorial, combustion/reactingFoam/RAS/membrane, has been added which
demonstrates this transfer process.
This work was done with support from Stefan Lipp, at BASF.
To disable face correspondence checking set
checkFaceCorrespondence off;
in blockMeshDict. This is necessary in the rare cases where adjacent block
faces do not need to correspond because they are geometrically collapsed,
e.g. to form a pole/axis.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2711
ENH: foamyHexMesh: Made default region volume type that of it's parent
Foamy surface conformation entries have a "meshableSide" entry which
controls which side of the surface is to be meshed. Typically this is
set "inside" for boundaries and "both" for baffles. A sub-region's
default entry is now taken from it's parent, rather than a specific
value (it was "inside"). This is consistent with how other entries are
handled.
surfaceConformation
{
locationInMesh (0 0 0);
geometryToConformTo
{
baffle
{
featureMethod extractFeatures;
includedAngle 120;
meshableSide both; // <-- per-surface setting
regions
{
disk
{
meshableSide both; // <-- per-region setting*
// *in this example, this entry is not needed, as it
// is taken from the per-surface setting above
}
}
}
// ...
}
}
ENH: foamyHexMesh: Added (reinstated) baffle patches
A patch can now be assigned to a baffle surface. This assignment will
take precedence over any face-zones.
surfaceConformation
{
locationInMesh (0 0 0);
geometryToConformTo
{
disk
{
featureMethod extractFeatures;
includedAngle 120;
meshableSide both; // <-- baffle
patchInfo
{
type wall;
inGroups (walls);
}
}
// ...
}
}
STYLE: foamyHexMesh: Switched off output of all the secondary meshes
The integration of force and heat transfer onto the particle is
facilitated by a run-time-selectable integration scheme. These schemes
were written to generate the value at the end of an intregration step
and also an average value over the step from which the total transfer
was computed.
The average value in the Euler scheme was implemented incorrectly, which
resulted in the momentum and heat transfer processes being
non-conservative. Implementing the average correctly, however, would
have inteoduced a number of trancendental functions which would have
negated the purpose of the Euler scheme as the cheap and stable option.
The schemes have been rewritten to generate changes over the step,
rather than the final value. This change is then used to calculate the
transfers. Regardless of the scheme, this formulation is guaranteed to
be conservative, and the Euler scheme remains computationally
inexpensive.
This change was made with help from Timo Niemi, VTT
This resolves bug report https://bugs.openfoam.org/view.php?id=2666
ENH: integrationSchemes: Further simplification and optimisation
Removed templating from integration schemes, improved the name
convention, and optimised the utilisation so that the virtual call is
only made once per integration in the KinematicParcel and the
ThermoParcel.
BUG: integrationSchemes: Corrections to coupled/non-coupled force splitting
The integration splitting implemented in commit a5806207 has been shown
to be incorrect in some cases. A new procedure has been implemented
which can correctly split the implicit-explicit integral into a number
of pieces, in order to calculate the contribution of each. This is
intended for integrating coupled and non-coupled particle momentum and
heat transfers.
However, currently there is only ever one implicit coefficient used in
these transfers (there is no implicit non-coupled contribution). The
evaluation has therefore been short-cutted to only do the integration
with respect to the coupled contributions. The splitting functionality
has been retained in case additional separate implicit coefficients are
required in the future.
This change was made with help from Timo Niemi, VTT
This resolves bug report https://bugs.openfoam.org/view.php?id=2666
XiEngineFoam is a premixed/partially-premixed combustion engine solver which
exclusively uses the Xi flamelet combustion model.
engineFoam is a general engine solver for inhomogeneous combustion with or
without spray supporting run-time selection of the chemistry-based combustion
model.
Standard crank-connecting rod and the new free-piston kinematics motion options
are provides, others can easily be added.
Contributed by Francesco Contino and Nicolas Bourgeois, BURN Research Group.
OpenFOAM is a free, open source CFD software [released and developed primarily by OpenCFD Ltd](http://www.openfoam.com) since 2004. It has a large user base across most areas of engineering and science, from both commercial and academic organisations. OpenFOAM has an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to acoustics, solid mechanics and electromagnetics. [More...](http://www.openfoam.com/documentation)
OpenFOAM is professionally released every six months to include customer sponsored developments and contributions from the community - individual and group contributors, fork re-integrations including from FOAM-extend and OpenFOAM Foundation Ltd - in this Official Release sanctioned by the OpenFOAM Worldwide Trademark Owner aiming towards one OpenFOAM.
OpenFOAM is professionally released every six months to include
customer sponsored developments and contributions from the community -
individual and group contributors, re-integrations (including from
FOAM-extend and OpenFOAM Foundation Ltd) - in this Official Release
sanctioned by the OpenFOAM Worldwide Trademark Owner aiming towards
one OpenFOAM.
# Copyright
@ -17,6 +22,162 @@ Please [contact OpenCFD](http://www.openfoam.com/contact) if you have any questi
Violations of the Trademark are continuously monitored, and will be duly prosecuted.
# Using OpenFOAM
If OpenFOAM has already been compiled on your system, simply source
the appropriate `etc/bashrc` or `etc/cshrc` file and get started.
# How do I know which version I am currently using?
The value of the `$WM_PROJECT_DIR` or even `$WM_PROJECT_VERSION` are
not guaranteed to have any correspondence to the OpenFOAM release
(API) value. If OpenFOAM has already been compiled, the build-time
information is embedded into each application. For example, as
displayed from `blockMesh -help`:
```
Using: OpenFOAM-v1812.local (1812) (see www.OpenFOAM.com)
Build: 65d6551ff7-20190530 (patch=190531)
Arch: LSB;label=32;scalar=64
```
This output contains all of the more interesting information that we need:
| item | value |
|-----------------------|---------------|
| version | v1812.local |
| api | 1812 |
| commit | 65d6551ff7 |
| author date | 20190530 |
| patch-level | (20)190531 |
| label/scalar size | 32/64 bits |
As can be seen in this example, the git build information is
supplemented by the date when the last change was authored, which can
be helpful when the repository contains local changes. If you simply
wish to know the current API and patch levels directly, the
`wmakeBuildInfo` script provides the relevant information even
when OpenFOAM has not yet been compiled:
```
$ wmakeBuildInfo
make
api = 1812
patch = 190531
branch = master
build = 65d6551ff7-20190530
```
Similar information is available with `foamEtcFile`, using the
`-show-api` or `-show-patch` options. For example,
```
$ foamEtcFile -show-api
1812
$ foamEtcFile -show-patch
190531
```
This output will generally be the easiest to parse for scripts.
The `$FOAM_API` convenience environment variable may not reflect the
patching changes made within the currently active environment and
should be used with caution.
# ThirdParty directory
OpenFOAM normally ships with a directory of 3rd-party software and
build scripts for some 3rd-party software that is either necessary or
at least highly useful for OpenFOAM, but which are not necessarily
readily available on every operating system or cluster installation.
These 3rd-party sources are normally located in a directory parallel
to the OpenFOAM directory. For example,
```
/path/parent
|-- OpenFOAM-v1906
\-- ThirdParty-v1906
```
There are, however, many cases where this simple convention is inadequate:
* When no additional 3rd party software is actually required (ie, the
operating system or cluster installation provides it)
* When we have changed the OpenFOAM directory name to some arbitrary
directory name, e.g. openfoam-sandbox1906, etc..
* When we would like any additional 3rd party software to be located
inside of the OpenFOAM directory to ensure that the installation is
encapsulated within a single directory structure. This can be
necessary for cluster installations, or may simply be a convenient
means of performing a software rollout for individual workstations.
* When we have many different OpenFOAM directories for testing or
developing various different features but wish to use or reuse the
same 3rd party software for them all.
The solution for these problems is a newer, more intelligent discovery when locating the ThirdParty directory with the following precedence:
1. PROJECT/ThirdParty
* for single-directory installations
2. PREFIX/ThirdParty-VERSION
* this corresponds to the traditional approach
3. PREFIX/ThirdParty-vAPI
* allows for an updated value of VERSION, *eg*, `v1906-myCustom`,
without requiring a renamed ThirdParty. The API value would still
be `1906` and the original `ThirdParty-v1906/` would be found.
4. PREFIX/ThirdParty-API
* this is the same as the previous example, but using an unadorned
API value. This also makes sense if the chosen version name also
uses the unadorned API value in its naming, *eg*,
`1906-patch190131`, `1906.19W03`
5. PREFIX/ThirdParty-common
* permits maximum reuse for various versions, but only for
experienced user who are aware of potential version
incompatibilities
If none of these directories are found to be suitable, it reverts to using PROJECT/ThirdParty as a dummy location (even if the directory does not exist). This is a safe fallback value since it is within the OpenFOAM directory structure and can be trusted to have no negative side-effects.
In the above, the following notation has been used:
| name | value | meaning |
|---------------|---------------|---------------|
| PROJECT | `$WM_PROJECT_DIR` | The OpenFOAM directory |
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.